
© helpIT systems ltd 2007-2016 www.helpIT.com

matchIT is a registered trademark of helpIT systems ltd

matchIT SQL
Information Pack

© helpIT systems ltd 2007-2016 www.helpIT.com

matchIT is a registered trademark of helpIT systems ltd

1 Contents

1 Contents ... 2

2 Introduction .. 6

3 Processing Unicode Data .. 7

4 Getting Started Tutorial ... 8

4.1 Introduction ... 8

4.2 Quick start with example data ... 8

4.3 Getting set up with your own database schema .. 8

4.3.1 Match Keys .. 8

4.3.2 General Settings .. 9

4.3.3 Output Settings.. 10

4.3.4 Data Sources ... 10

4.3.5 matchIT API Settings ... 12

4.3.6 Overview of XML Configuration File ... 13

4.3.7 Running the application configured to your data .. 13

4.3.8 Triggers .. 14

4.3.9 Running in Passive Mode .. 15

5 Overview of XML UI ... 16

6 matchIT SQL Component Overview .. 19

6.1 Stored Procedures .. 19

6.2 SSIS Components ... 19

6.3 Worker Processes ... 19

6.4 matchIT SQL Service .. 19

6.5 Error Logging ... 19

6.6 matchIT SQL Monitor .. 19

7 Stored Procedures ... 20

7.1 Address Correction ... 20

7.1.1 msp_GenerateCorrectedAddresses .. 20

7.1.2 msp_GenerateNCOAAddresses .. 40

7.2 Key Generation ... 54

7.2.1 msp_CreateKeysTable .. 54

7.2.2 msp_AddKeyFieldsToTable ... 55

7.2.3 msp_GenerateKeys .. 56

7.2.4 msp_BulkGenerateKeys .. 62

7.2.5 msp_CreateIndexes ... 62

7.3 Exact Deduplication .. 64

7.3.1 msp_FindExactMatches .. 64

7.3.2 msp_FindExactOverlap ... 66

matchIT SQL Information Pack Page 3 of 133

7.3.3 msp_GroupExactMatches .. 67

7.3.4 msp_GroupExactOverlap .. 68

7.4 Fuzzy Deduplication .. 69

7.4.1 msp_FindMatches .. 69

7.4.2 msp_FindOverlap ... 76

7.4.3 msp_GroupMatches .. 78

7.4.4 msp_GroupOverlap .. 81

7.5 Output ... 83

7.5.1 msp_OutputMatchingPairs .. 83

7.5.2 msp_OutputMatchingGroups ... 84

7.5.3 msp_OutputDuplicates ... 85

7.5.4 msp_OutputDedupedTable ... 86

7.5.5 msp_TagMatchingResultsWithGroupLevel .. 87

7.5.6 msp_OutputOverlapMatchingPairs ... 88

7.5.7 msp_OutputOverlapMatchingGroups ... 89

7.5.8 msp_OutputOverlapDuplicates .. 90

7.5.9 msp_OutputOverlapDedupedTable .. 91

7.5.10 msp_TagOverlapMatchingResultsWithGroupLevel ... 92

7.6 Triggers ... 93

7.6.1 msp_CreateTableTriggers ... 93

7.6.2 msp_DeleteTableTriggers ... 93

7.6.3 msp_GenerateSingleKeys ... 93

7.7 Miscellaneous ... 94

7.7.1 msp_CreateCustomMatchesTable .. 94

7.7.2 msp_CreateCustomGroupedMatchesTable ... 94

7.7.3 msp_CreateUniqueRefField ... 94

7.7.4 msp_SingleRecordMatch ... 95

7.7.5 mfn_SingleRecordMatch ... 96

7.7.6 mfn_SingleRecordMatch2 ... 96

7.7.7 mfn_SingleRecordMatchEx .. 97

7.7.8 mfn_SingleRecordMatchEx2 .. 97

7.7.9 mfn_SingleGenerateKeys .. 98

7.8 General Progress Logging Table .. 99

7.8.1 log .. 99

8 Summary Reporting ... 101

8.1 GenerateCorrectedAddresses Summary Report ... 102

8.2 FindMatches Summary Report ... 103

8.3 FindOverlap Summary Report .. 104

8.4 GroupMatches Summary Report .. 105

8.5 GroupOverlap Summary Report ... 105

matchIT SQL Information Pack Page 4 of 133

8.6 FindExactMatches Summary Report ... 106

8.7 FindExactOverlap Summary Report .. 106

8.8 GroupExactMatches Summary Report .. 106

8.9 GroupExactOverlap Summary Report ... 106

9 Address Correction .. 107

9.1 Installation ... 107

9.2 Setup ... 107

9.3 Usage .. 107

10 Mail Sortation .. 108

10.1 Installation .. 108

10.2 Usage ... 108

10.3 Advanced Automation .. 110

11 Suppression Processing .. 111

11.1 Installation .. 111

11.2 Utilising the SSIS package. .. 111

11.2.1 Suppression Priorities ... 113

11.2.2 Using the options config. .. 113

11.2.3 Suppression Loader .. 114

11.2.4 Select the data to be suppressed .. 115

11.2.5 Suppression Output .. 115

11.2.6 Re-generating Output without Re-running suppressions ... 115

11.2.7 Cancelling a job from the log .. 116

11.2.8 Hardware Recommendations .. 116

12 SSIS Tasks .. 117

12.1 Installation .. 117

12.2 Setup ... 117

12.3 Usage ... 117

13 Troubleshooting ... 119

13.1 A .NET Framework error occurred during execution of user-defined routine or aggregate
"msp_GenerateKeys": ... 119

13.1.1 Possible Cause: .. 119

13.2 A .NET Framework error occurred during execution of user-defined routine or aggregate

msp_GenerateCorrectedAddresses ... 119

13.2.1 Possible Cause: .. 119

13.3 Column ‘<column>’ has invalid type: <type> ... 120

13.3.1 Cause: .. 120

Appendix A – SSIS Screenshots .. 121

Generate Corrected Addresses Task ... 123

Source Tables ... 123

Input Mappings ... 124

matchIT SQL Information Pack Page 5 of 133

Output Mappings ... 125

API Settings .. 126

Generate Keys Task .. 127

Source Tables ... 127

Input Mappings ... 128

Output Settings ... 129

Filtering and Sampling Settings .. 130

Advanced Settings ... 131

Appendix B - Key Generation Flag field .. 132

matchIT SQL Information Pack Page 6 of 133

2 Introduction

Welcome to the matchIT SQL Product information pack. This product has been developed to

allow users to run batched data cleansing by utilizing the matchIT API.

matchIT SQL makes use of SQL CLR, a feature of SQL Server 2005 that allows stored

procedures and functions for SQL Server to be written using .NET languages, as well as using
ADO.NET rather than classic ADO for increased performance.

matchIT SQL is highly stable and robust. The unmanaged matchIT API COM component is

loaded into an external application – the ‘worker’ process – so that the stored procedures
assembly can be loaded into SQL Server using External Access privileges.

The main core of the matchIT SQL functionality is configurable through an XML file. This is
the heart of matchIT SQL, which is used to modify settings of the matchIT API and to map

your data to the relevant fields of the matchIT Record object. The XML Configuration file is

used in all CLR procedures that involve working with your data, and is described in more detail
below.

This guide should be read in conjunction with the documentation for the matchIT API and has
been split into the following chapters.

� Getting Started Tutorial – tutorial detailing how you would go about making changes to
the default xml configuration file to work with your own database and matching keys;

� Technical Reference – technical reference describing each of stored procedures offered

by matchIT SQL;
� Troubleshooting – this section will help you with the most common error messages you

are likely to see when using the product.

matchIT SQL Information Pack Page 7 of 133

3 Processing Unicode Data

matchIT SQL is fully able to handle Unicode data. It does this by transliterating Unicode

characters into characters from the Latin1 code page (Windows-1252) so that they can be

processed by the matchIT API core. The Latin1 code page is generally used by Western
European languages, including English, Spanish, French, and German.

Transliteration is not the same as translation, in which words are converted from one
language to another; when transliterating, it’s the characters themselves that are converted

from one alphabet to another. For example, the Chinese character 昌 means “prosperous”

and is pronounced “chang”, and the Chinese character 李 means “plum” and is pronounced

“li”. Transliteration converts the Chinese name 昌李 into “chang li” (translation would convert

this to “prosperous plum”).

Characters from alphabets such as Cyrilic (languages include Russian) and scripts such as CJK
(Chinese, Japanese, Korean) can be input into matchIT SQL. Transliteration will be performed

in two places:

1. when match keys are generated and output via the BulkGenerateKeys stored procedure

or GenerateKeys SSIS task (this produces output using Latin1 characters);

2. when records are compared via the FindMatches and FindOverlap stored procedures and
SSIS tasks.

matchIT SQL Information Pack Page 8 of 133

4 Getting Started Tutorial

4.1 Introduction

matchIT SQL comes with some pre-written SQL scripts to create tables and stored

procedures, and also run various de-duplication methods on the example data included.

Importing this example data and running the scripts is explained in the following section,
‘Quick start with example data’.

A guide on modifying the XML Configuration file and how to set up the product to
communicate with your own data is set out in the section ‘Getting set up with your own

database schema’. The guide will focus on setting up matchIT SQL to perform a single data
source de-duplication on your own data.

4.2 Quick start with example data

The easiest way to run matchIT SQL with the example data is to run the four .sql scripts,

‘Import Example Data’, ‘Generate Keys’, ‘Find Matches’, and ‘Find Overlap’, which can be
accessed through the Windows start menu (Start > Programs > matchIT SQL > Demo) once

the application has been installed. Run them in order: the first will install the example
database with the relevant tables; the second script will generate the search keys; the third

will find matches in the first table; and the last will find the overlap between the two tables.

Opening any script from the Start Menu will automatically open it in SQL Server management
studio (provided that is how your .sql file association is set up) from where it can be

executed. ‘Find Matches’ will run a single de-duplication on the first set of data, example1,
producing a results table called ‘matches’. ‘Find Overlap’ will perform a two-data source

overlap between the example1 and example2 data.

The other way to import the example data and run the de-duplication processes is to simply
browse to the scripts in SQL Server Management Studio manually. The demo scripts are

located in ‘C:\matchIT SQL\demo’, and further scripts can be found in ‘C:\matchIT
SQL\scripts’. When you browse to the latter location you will see that there are a wide

variety of scripts available to run. To install the data, you need to run
‘ImportExampleData.sql’ (found in the demo folder) to actually install the database. After

that you can then run the script of your choice to perform the de-duplication you want. In

the ‘scripts’ folder, ‘FindMatches.sql’ will run a single data source de-duplication on the
example1 data, ‘FindOverlap.sql’ will run a two-data source de-duplication on the example1

data and example2 data, and ‘DedupeExample.sql’ (in the demo ‘folder’) will run both. The
same applies to running FindMatches.sql and FindOverlap.sql in that you will need to amend

Config.xml as mentioned above before running them. The scripts have been split into

separate folders distinguish between ones that are for demonstration purposes (in the demo
folder) and ones that are for more practical use (in the scripts folder).

4.3 Getting set up with your own database schema

Now let’s take a closer look at the XML Configuration of matchIT SQL, namely the file
Config.xml located in ‘C:\matchIT SQL\demo’. It is easiest to break down the XML file into

sections as they appear in the file itself.

4.3.1 Match Keys

The first section that appears in the XML configuration file is the <matchKeys> node,
within which there are definitions for three types of keys: <fuzzyKeys>, <exactKeys> and

<duplicatePreventionKeys>.

In short, a match key is used to group potential matches within data. The keys you will
want to use will depend on the kind of data you are working with. An example of a match

key that is commonly used is the ‘name key’, which is the phonetic surname combined with
the initial of the first name. The name key for ‘John Smith’ would be ‘smyTJ’, which would

group names such as Jonathan Smith and Jon Smythe. These potential matches would

then be compared with each other and scored to rate the validity of the match.

matchIT SQL Information Pack Page 9 of 133

By default, three ‘Composite keys’ are defined for the <fuzzyKeys> node - A composite key
is a collection of single keys that are used together in a query to search for data. You can

add or remove composite keys (note that one search is done per composite key, so more
composite keys means more processing time) by adding or removing <key> nodes within

the <fuzzyKeys> node, as well as modifying the single keys of the <key> nodes
themselves. The <fuzzyKeys> are used in the fuzzy matching processes such as

findMatches and findOverlap.

Also by default, a ‘Composite key’ containing 8 keys is defined for the <exactKeys> node –
They can be modified in exactly the same way that the <fuzzyKeys> are, and are used in

the exact matching processes, such as findExactMatches and findExactOverlap. Records
with identical exactKeys are deemed to be exact matches without any further comparisons

or processing, hence there is not scoring. It is therefore important to use valid keys for this

node. For example, just using ‘name key’ like in the example above may cause 2 John
Smiths at completely different addresses, who are therefore most likely completely

different people, to be classed as exact matches.

The <duplicatePreventionKeys> node can similarly contain any number of composite keys

(one is defined by default), and these can be modified in exactly the same way as the
others, by adding or removing ‘keyX’ attributes (where X is an integer). The duplicate

prevention keys are used in the msp_SingleRecordMatch procedure and

mfn_SingleRecordMatch table-valued function (TVF), which will typically be used in a
passive manor, described further on.

It is also worth noting here that it is possible to use matchIT record fields as search keys
as well as key fields themselves (i.e. fields with the ‘mk’ prefix). Note however that if there

is no field mapping defined for a particular matchIT record field (discussed in the

<datasource> section below), the key will not be able to be used as a match key, and an
exception will occur if it is.

Note – It is possible to declare SQL string functions with the key definitions, that is, LEFT,
RIGHT and SUBSTRING. If you wanted to use the fist 2 letters of post out for example as

a match key, you would set the ‘keyN’ attribute to be LEFT(mkPostOut, 2). You would do
the same with the RIGHT and SUBSTRING functions (with SUBSTRING taking a third

counter argument). The following other functions can be used: LTRIM, RTRIM, TRIM,

PUNTRIM, UPPER, and LOWER.

4.3.2 General Settings

The <generalSettings> section of the configuration contains nodes that define settings for
various methods of matchIT SQL. Explanations for each are listed below –

Node Description

progressInterval Sets the length of time (in milliseconds)

between progress reports sent to the sql pipe

for various methods in the product. Increasing
the progress interval will marginally improve

performance at the cost of losing information
sent to the user.

tempFileDirectory Sets the directory that files such as the bulk

generation file and log files are created in. If
left blank, the windows Temp folder is used as

a default.

maxClusterSize Sets the maximum size that a cluster can be
before being reported as a large cluster.

Clusters are the groupings of records created
by the initial matching done on the match keys.

minimumIndividualScore Sets the minimum score for a match to pass at

matchIT SQL Information Pack Page 10 of 133

individual level.

minimumFamilyScore Sets the minimum score for a match to pass at

family level.

minimumHouseholdScore Sets the minimum score for a match to pass at
household level.

minimumBusinessScore Sets the minimum score for a match to pass at

business level.

minimumCustomScore Sets the minimum score for a match to pass at

custom level.

comms/port Sets the port to be used when a stored
procedure connects to the matchIT SQL

Service.

4.3.3 Output Settings

The <outputSettings> node contains custom definitions of two standard tables that are
produced by matchIT SQL (namely the matches and matches_grouped) that can be

created from the standard tables by running the relevant procedure. (In the case of
producing a custom matches table, you would run msp_CreateCustomMatchesTable, and

for the matches_grouped table you would run msp_CreatedCustomGroupedMatchesTable).

For both the <matchesOutputTable> and <groupedMatchesOutputTable> nodes, you must
define a custom table title with the ‘customTitle’ attribute, and then for each column

subnode in either definition it is possible to define a custom column name. If you want to
leave one of the columns from the standard tables out of your custom definition, simply

leave the ‘customName’ attribute blank.

The <outputSettings> node also contains tableSuffixes which allows you to specify suffixes
for tables which are automatically generated, such as the keys table and the output table,

but we recommend leaving these set to the defaults.

4.3.4 Data Sources

The <dataSources> node is where the mapping of your data takes place. The

<dataSources> node can contain any number of <dataSource> sub nodes, within which
you define your sources that you want to operate on. Each <datasource> node must have

an ‘id’ attribute specified as it is used when calling procedures to specify which data source

you want the procedure to work on.

The first sub node within the <dataSource> node is the <connectionString> node, which

contains a connection string to the database. By default, as mentioned in ‘Quick Start with
Example Data’, it has blank credentials and points to a database called

‘matchIT_SQL_demo’, which is the sample database created by matchIT SQL for use with

the sample SQL scripts. You need to amend the connection string as necessary to point to
your data.

Following the < dataSources > node is the <tables> node. This node contains all the
definitions of the tables within your database that contain the data to be worked with. A

single table is defined in a <table> node. The <table> node can contain any of the

following attributes:

matchIT SQL Information Pack Page 11 of 133

Attribute Description

Name The name of the table in the database

(mandatory for all tables).

uniqueRef The name of the unique reference column in
the table (mandatory for all tables).

join The name of the table that the table in

question joins to (the main table of data will
not have this attribute).

joinType The type of join to use between the table in

question and the table it is joining to – either
INNER, LEFT or RIGHT. Uses LEFT by default.

joinColumn The name of the column in the join table that

the unique ref column of the table in question
joins with (mandatory for any table definition

with a join attribute).

isKeysTable Indicates that the table in question is the keys

table definition (can only have one keys table

definition per data source, and it must join to
the main table of data)

isOutputTable Indicates that the table in question is the

output table which will contain cleaned and
normalised data after key generation (can only

have one output table defined per data source)

tableHints Here you can specify a comma delimited list of

Table Hints that will be used in SELECT queries

for the table in question, for example
‘NOEXPAND’ if the table you have defined is an

indexed view and you want the query to
reference the view rather than its base tables.

Within a <table> node, it is possible to have multiple <conditionalColumn> sub nodes that
define columns in the table in question that must meet a condition for a record to be

included (for example, a ‘deleted’ flag column). A <conditionalColumn> node must have

the following attributes defined:

Attribute Description

name The name of the column in the table.

isEqualTo Specifies whether the value should or should

not be equal to the value.

Value The value of the flag column (linked to the
isEqualTo attribute as mentioned above).

isIntegerType Specifies whether the column is an integer type

or not.

One thing to note about the <tables> section is that SQL server supports views, so it is

possible to use the name of a view for the ‘name’ attribute of a table node.

matchIT SQL Information Pack Page 12 of 133

4.3.4.1 Using a Sample from your datasource

The next part of the datasource definition is Sampling. This allows you to specify a

specific sample of data to use during your processing rather than the complete
datasource. This can be useful if you are testing your scripts and refining matching

settings.

There are several sampling options available:

� Percentage – uses a percentage from your datasource. For example, if you

select 10%, then 1 in 10 records from your datasource would be used.

� NinM - uses a sample based on N in every M records of the source data.

� Range - Uses a sample over the specified range of the specified field.

� RandomN - Uses a sample of N randomly selected records from the source
data.

� MaxFromTop - uses a sample of the top N records from the source data. If
this option is applied with any of the previous options, then the limit setting is

used as a restriction on the maximum number of records that will be used in

the sample.

When sampling is enabled, only a sample of your data will be used by the matchIT SQL

stored procedures; remember to de-activate this when you are ready to process your
complete datasource!

4.3.4.2 Field Mappings

The last node within the <dataSource> node is the <fieldMappings> node - It contains
<fieldMapping> sub nodes that define how fields in your data map to the matchIT

record object. The ‘matchITField’ attributes of these nodes are pre-set and must not
be changed – The attribute that you will need to modify is the ‘databaseField’. Simply

put the values of the ‘databaseField’ nodes to the names of the fields in your data that

best match the corresponding ‘matchITField’. Any matchITFields that do not have an
equivalent in your database should have their databaseField attributes left blank.

Note that it is also possible to specify custom fields that do not have a specific matchIT
record equivalent, that you wish to match on, to any of the 9 generic custom fields that

are available in the matchIT record object. By default, a there is a node included in the

xml on installation with its matchITField attribute set to ‘CustomField1’ – You can in
fact have 9 nodes in total with their matchITField attribute values ranging from

CustomField1 to CustomField9. A database field such as ‘National Insurance Number’
could be mapped to one of these fields.

If you open a configuration file that has been edited and saved through the Web UI
(described below) you will also notice that there is an <addressing> node within each

data source that contains the settings used when running the addressing stored

procedure. The output contained within this node varies depending on what
addressing API is being used, and is best edited through the UI. For the sake of

getting the demo scripts to work with your own data however, you do not need to be
concerned with this node and whether or not it exists, as the addressing procedure will

not be used.

4.3.5 matchIT API Settings

The <matchITAPISettings> node defines all the settings related to the matchIT API.

Perhaps the one of the more important nodes in this section is the first node -
<nationality>. This node needs to be set to whatever the nationality of the data is that

you are working on.

The structure of the XML within the <matchITAPISettings> node follows the COM

hierarchy that is described in the matchIT API guide. Please refer to the matchIT API

guide for more detail on the settings and properties of the matchIT API and what they
mean.

matchIT SQL Information Pack Page 13 of 133

4.3.6 Overview of XML Configuration File

Below is a simple list summarising the sections of the XML Configuration that have been
described above. If you are unsure of a particular section, refer back though the

explanation above to be sure as it may cause the application to not work properly in your

case if not configured correctly.

� Match Keys – Define the keys that you wish to use for fuzzy matching, exact

matching and duplicate prevention matching.

� General Settings – Define the various general settings you wish to use during

processing.

� Output Settings – Define the schemas you wish to use to produce custom
‘matches’ and ‘grouped matches’ tables from the standard ones produced by

matchIT SQL.

� Data Sources – Defined the tables and mappings for your database(s) here.

� matchIT API Settings – Configure the matchIT API settings you wish to use in this

section.

Lastly, there are a couple of amendments that need to be made to the sql file

FindMatches.sql. If you open the file in SQL Server Management Studio, the lines that
need modifying are the following:

EXEC msp_CreateKeysTable @config='C:\matchIT SQL\demo\Config.xml',

@dataSourceID='1'

EXEC msp_BulkGenerateKeys @config='C:\matchIT SQL\demo\Config.xml',

@dataSourceID='1'

EXEC msp_FindMatches @config='C:\matchIT SQL\demo\Config.xml',

@dataSourceID='1'

EXEC msp_GroupMatches @config='C:\matchIT SQL\demo\Config.xml',

@dataSourceID='1', @level='individual'

Simply substitute ‘@dataSourceID='1'’ for whichever data source you wish to perform

the procedures on and ‘@level='individual'’ for whichever level you wish to group

the matches at (with the levels being individual, family, household, business and custom).

Note here how all the procedures listed above accept 2 common parameters – one is the

file path to the configuration file with your desired set up for the process, and the other is
the id of the data source in the configuration for the procedure to run on.

4.3.7 Running the application configured to your data

Once you are happy that all of the necessary changes have been carried out, you are ready

to execute the sql script FindMatches.sql in SQL Server Management studio.

As you will be able to see from the script, and as is shown in the code snippet above, this

script runs 4 stored procedures. First the msp_CreateKeysTable procedure will run,

creating the keys table called by whatever name it was given in the specified data source in
the XML. Secondly, the msp_BulkGenerateKeys procedure will generate the keys for the

data and populate the keys table. Thirdly, the msp_FindMatches procedure will run and
produce 2 tables – ‘large_clusters’ and ‘matches’ in the specified data source. The former

table stores logs of any instances where a cluster of matches has exceeded the default
maximum cluster size (set in the <generalSettings> section of the XML). The latter table

stores records of matches that occur, their associated scores at each matching level as well

as a column containing an integer indicating which levels the matches passed at (with
regards to the minimum scores set in the <generalSettings> section). The value in the last

column is made up from the sum of values which correspond to the levels at which the
match passed at, which are as follows

� Individual = 1

� Family = 2

matchIT SQL Information Pack Page 14 of 133

� Household = 4

� Business = 8

� Custom = 16

So for example, if a match contained a value of 9 in this column, that would mean that it
passed at both individual and business level (1 + 8).

Any errors that occur with procedures will appear in the output pane in SQL Server

Management Studio. From the error message you will be able to track down what the
error applies to, and modify the configuration / sql script accordingly.

Once you have got this working and have a good idea about the configuration, you can
have a look at running the other .sql scripts that are available in the demo folder, namely

DedupeExample.sql and FindOverlap.sql. You will see in each script from the lines that

start with EXEC what stored procedures are used. Note that in the case of overlapping in

these two scripts, both data sources in the configuration are used, and you have the

freedom to specify which data source to use as the main file and which one to use as the
overlap.

Depending on your situation, you may wish to amend the sql scripts provided or write your
own sql script from scratch to process your data. An overview of all stored procedures

available is available in the Technical Reference section.

4.3.8 Triggers

You may wish to have a system in place that keeps the keys table in a <dataSource>
produced by matchIT SQL kept in sync and up to date with any changes that occur within

the tables of data specified in the data source. matchIT SQL offers a system to take care

of this in the form of triggers. In the ‘scripts’ folder, you will see two scripts called
‘CreateTriggers.sql’ and ‘DropTriggers.sql’, the names of which are self-explanatory. If you

open up the first script, ‘CreateTriggers.sql’, the lines which you will need to amend are the
following.

USE matchIT_SQL_demo

ALTER DATABASE matchIT_SQL_demo

Simply amend these lines to point to the database that contains the tables you are creating
the triggers on.

'C:\Program Files\matchIT SQL\bin\StoredProcedures.dll'

Amend this file path if necessary to point to the assembly you wish to create the stored

procedures from.

'C:\matchIT SQL\demo\Config.xml'

Amend this file path to point to the configuration file that contains the data source defining
the tables you wish to create the triggers on.

Note – Once created, the triggers rely on the Configuration file being unchanged and

staying in the same location as when created. Triggers are only really recommended for
long term set ups that are not going to change. The triggers created on the tables in data

source specified when calling msp_CreateTableTriggers also rely on the fact that the
database in question has the msp_GenerateSingleKeys stored procedure on it too (which

gets created along with the assembly in CreateTriggers.sql). If this procedure is not

available on the database, the triggers will simply do nothing. Triggers should be deployed
with care and testing to make sure no errors occur that could prevent database updates,

inserts and deletions occurring in the tables that the triggers exist on.

As an overview then, and as can be seen in the following line

EXEC msp_CreateTableTriggers @config='C:\matchIT

SQL\demo\Config.xml', @dataSourceID='1'

matchIT SQL Information Pack Page 15 of 133

Triggers are created on a particular database using the specified configuration file on the
tables defined in the specified data source. Once created, the triggers, when fired, rely on

the Configuration File they were created with being in the location that was specified on
creation, and for accurate results, for it to be unchanged.

To remove triggers, and all associated procedures and the assembly, make the same style
modifications as per the create script above – The configuration file and data source used

to remove the triggers will need to be the same as when they were created.

4.3.9 Running in Passive Mode

It may be necessary, depending on the scenario, to run some match processing in the

background that is not required in real time. An example of this might be an e-commerce
web site that has members joining every week – where it may be necessary to run a

weekly process to gather all the new joiners and then search for matches in the database.
In this situation, the best thing to do would be to gather a collection of records for which

you wish to wish to check against the database for duplicates, and run the

msp_SingleRecordMatch stored procedure (described in the technical reference) for each
one and log the matches for each record as suits the situation. See the description of

msp_SingleRecordMatch for information on what it returns and the parameters it accepts.

matchIT SQL Information Pack Page 16 of 133

5 Overview of XML UI
matchIT SQL ships with a web user interface for making amendments to XML configuration
files. During installation you would have been asked what web server you wish to use for this

UI - IIS, Cassini or none. If you chose the latter then this section does not really apply as the

UI would not have been installed. If you did however choose to install the UI by selecting one
of the other options, then you will be able to access it through the start menu – Start >

Programs > matchIT SQL > matchIT SQL UI. If you are using IIS, you will need to make a
change to a default value in the Web.config file (found in ‘C:\Program Files\matchIT

SQL\bin\UI’), namely the following –

<identity impersonate="false" userName="Domain\User"

password="Password" />

The value for impersonate will need to be set to true and the values of userName and

password will have to be changed to some valid credentials for the machine that the UI is

hosted on – The UI will run under the context of this user. The reason for this is so that when

an XML file is saved, the application has the permissions to write to the file (which, in the case
of IIS, running under an anonymous user, it would not be able to do so). It is best to set up a

user with the minimum privileges necessary to perform this action to preserve security.

In the authentication section of the Web.config file, you will notice the following node –

<user name="admin" password="21232f297a57a5a743894a0e4a801fc3" />

These are the credentials (with the password stored as an MD5 hash) that you will need to

enter when logging into the application. The default values for the username and password

for a fresh install are ‘admin’ and ‘admin’ respectively. We recommend that you generate an
MD5 hash for a stronger password and use this instead.

After browsing to the UI through the start menu you should see the following.

Simply enter the default username and password (admin/admin or otherwise if you have
changed it) to log into the UI. After doing so, you will be presented with the following screen,

where you can either choose to edit and existing configuration file or create a new one.

matchIT SQL Information Pack Page 17 of 133

Note that the folder tree on the left shows the list of XML files that are in the ‘Config’ directory

of the matchIT SQL installation – The UI is set to point to this in the Web.config file in the
appSettings section, as well as specifying what file to use as a base file for creating new

configuration files and reverting to default settings (Template.xml by default, which is omitted

from the edit list on the left – this file is read-only). You will also notice a ‘Log out’ link at the
top right of the screen that you can use to get back to the ‘Log In’ screen. Once you select to

edit or create a file, the screen will look as follows.

matchIT SQL Information Pack Page 18 of 133

You are now in a position to edit / create the file you have selected. The navigation of the
form follows the logical structure of the XML and should be easy to use. On the left hand side

you will see three buttons - ‘Save’, ‘Save and Exit’ and ‘Restart’ – which allow you to save
changes and return to the config file selection page. At the top of most sections you will see

the ‘Revert To Start’ and ‘Default Settings’ buttons which revert the changes you have made to
the section you are on back to the settings you started with or to the default settings

respectively. Note that the Data Sources section doesn’t have a ‘Default Settings’ button for

each data source, as there are no real ‘Default Settings’ for a data source.

If you are unsure of any section you are looking at, you can use the ‘help’ prompts in each

section to point you in the right direction. These are the small blue circles containing a white
question mark located on the right. Clicking on them will expand information on the section

they are related to.

matchIT SQL Information Pack Page 19 of 133

6 matchIT SQL Component Overview
This chapter guides you through at a high level the key components that comprise matchIT
SQL.

6.1 Stored Procedures

These provide the high-level functionality; they’re responsible for such things as accessing

the database, finding records to compare, and importing results.

6.2 SSIS Components

These provide the same level of high-level functionality as the stored procedures but are

delivered through Microsoft’s SSIS Software. SSIS packages provide a rapid way of
implementing your matching process and can be scheduled from SQL Management Studio’s

SQL Server Agent.

6.3 Worker Processes

These provide a safe interface to the matchIT API, an unmanaged COM component for

generating search keys and comparing records. Should a problem be encountered within the

unmanaged code, the service can automatically spawn a new worker and thus provide a
highly stable and robust batch processing environment.

From a user perspective you will not need to worry about the workers, but we mention them
here for the purposes of completeness.

6.4 matchIT SQL Service

This provides a link between the stored procedures and worker processes. When a stored

procedure runs, it connects to the service which, in turn, creates a new worker. The stored
procedure then connects to the worker, which will then provide the stored procedure with all

matchIT API-related functionality.

From a user perspective you will not need to worry about the service, but we mention it here

for the purposes of completeness.

6.5 Error Logging

When an error is generated through the matchIT SQL stored procedures or SSIS tasks, an

error log will normally be created in the specified temporary folder (note that where there are

actual problems with the XML configuration file itself, i.e. invalid XML then this error log
cannot be produced). Normally if an error occurs, you should be able to review this error log

and quickly see what the problem is. In the rare scenario that you are unable to determine
the cause of the error yourself, then feel free to contact our support team and send through

the error log file to support@helpit.com who will then be able to actively investigate the

problem.

6.6 matchIT SQL Monitor

This isn’t an essential component of the matchIT SQL system. It’s a simple program that’s

useful for monitoring the status of the service and any active worker processes. It can be
used to detect deadlocked and crashed workers and provides a convenient mechanism for

terminating them so that the stored procedure can resume processing.

matchIT SQL Information Pack Page 20 of 133

7 Stored Procedures

matchIT SQL provides stored procedures, organised into the following categories:

� Address Correction

� Key Generation
� Fuzzy Deduplication

� Exact Deduplication
� Output

� Triggers

� Miscellaneous.

7.1 Address Correction

The stored procedures within this section relate to validation of addresses against post office

address files.

7.1.1 msp_GenerateCorrectedAddresses

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains the table and column mapping specifications.

Generates corrected addresses for the source addresses specified in the supplied
configuration. The corrected addresses will be written to the output table specified in the

configuration, and can be subsequently used in matching processes.

The source and output mappings can be configured through the Web UI, or directly in the

XML in the section called Addressing within the Datasource settings. The output table
generated from the addressing step can then be used as the source table for your

addresses within the matching step.

Setting Description

dataSources Specifies the database connection, table and column mappings used
to define the dataset being processed.

To use the resulting corrected address table produced on completion
of this process, you should add this table into the datasource.

addressing->databaseSettings-
>SourceSettings->sourceTables

Table name containing the source address data that is to be used
during processing.

addressing->databaseSettings-
>SourceSettings->sourceColumns

This allows the mapping of the source table’s columns to specific
address data types.

addressing->databaseSettings-
>OutputSettings->outputTable

Name of the table containing the corrected addresses that will be
produced following completion of this process.

addressing->databaseSettings-
>OutputSettings->outputColumns

This allows the configuration of the output columns. The
CorrectedMapping attribute is used to specify the address element
that should go into a specific field should the source address be
validated.

matchIT SQL Information Pack Page 21 of 133

The SourceMapping attribute specifies the source table’s data field
that will populate this field, should the source address fail validation.

addressing->databaseSettings-
>OutputSettings->outputColumns-
>TIGERData

This section allows configuration of TIGER Data appending (US Only).
The enabled attribute specifies whether or not appending is turned on,
and the onlyCodeValidAddresses attribute specifies whether or not to
append data for non-verified addresses also.

Each TIGER field can be specified as a sub node of this node, with the
name of the field as the name of the node, and an enabled attribute
to specify whether or not to append the given field. This defaults to
false. See the section below for an explanation of each TIGER Data
field.

(Only applicable for US addressing.)

addressing->apiSettings->threadCount Number of threads that may be used during the processing.
Recommendation is to use 1 thread per machine core.

addressing->apiSettings->defaultAPI When licenced for the UK and US addressing APIs, but not the
international addressing API, this setting specifies which addressing
API (UK or US) to use for international addresses.

addressing->progressLoggingSettings->filePath Location of a progress log file which is output during Address
processing.

addressing->progressLoggingSettings->interval How frequently updates will be written to the progress log file (in
milliseconds).

7.1.1.1 US Addressing Settings

Setting Description

Addressing->apiSettings->enabledUS When set to “false” the US addressing API is not used even when
licenced. Default “true”.

addressing->apiSettings->processing Only applicable for US addresses that contain both a box number and
a street number.

Valid values are “PreferBox” and “PreferStreet”; on output the former
will place box numbers on the first address line, while the latter will
instead place street numbers on the first address line.

addressing->apiSettings->useMixed If this is set to "true", data is returned in mixed-case format. If this is
set to "false", result data is returned in all upper case characters.

addressing->apiSettings->useAlias If this is set to "true", alias street names are returned when they are
used in the input. If this is set to "false", 'official' street names are
returned even when alias street names are used in the input.

(An alias street name is an alternative name for a street that is
acceptable to the USPS. It may be a name by which a street was
formerly known, a commonly-used nickname for the street, or one the
community prefers to use.)

7.1.1.2 UK Addressing Settings

Setting Description

Addressing->apiSettings->enabledUK When set to “false” the UK addressing API is not used even when
licenced. Default “true”.

addressing->apiSettings->processType Value can be AddressCorrection or Postcode correction. Postcode
correction is an option for UK addressing only and indicates that only
postcodes are to be updated and not address lines. DPSOnly is an
option for UK addressing that appends the DPS code without changing
the address or postcode.

addressing->apiSettings->scoreThresholds Any address level match falling below the “address” score threshold
and any postcode level match falling below the “postcode” score
threshold is downgraded to “tentative”.

The default values of 50 for both address and postcode are already
quite strict. If your input address data contains a lot of extraneous
text you might want to consider lowering these thresholds.

You can safely lower these thresholds to 0 – in which case you will be
relying solely on the addressing engine’s internal checks.

matchIT SQL Information Pack Page 22 of 133

addressing->apiSettings->capitalisePostTown When set to True, postal towns will be capitalised in the output table.

addressing->apiSettings->keepNonPafData When set to True, matchIT SQL will attempt to keep non PAF
elements (i.e. extra data that may not be in the postal address file)
when updating addresses.

Sub options control which types of non-PAF data to keep:
“above” – elements above the top of address (e.g. flat names)
“within” – elements within the address (e.g. misspelled localities)
“PNR” – elements recognised as PNR (Postally Not Required) localities.

addressing->apiSettings-
>preventCompanyUpdates

Stops organizations from being updated.

addressing->apiSettings->advancedFuzzy When Advanced Fuzzy is disabled, the fuzzy matching algorithm
employed only allows for one or two spelling errors in an entire name.
Advanced Fuzzy acts at a word level, and allows names to be matched
even if some words are missing (depending on how highly occurring
the missing words are). Default “true” (Advanced Fuzzy enabled).

addressing->apiSettings->resubmitFailures When enabled, failures are resubmitted with the first two populated
address lines swapped. This is useful when subpremise details are on
the line following the street name, instead of the line preceding the
street name, e.g. “15 Grand Avenue, Flat 1”. Default “true”.

addressing->apiSettings-
>removePostcodeFromInputAddress

When a partial match is found only the postcode field is updated - any
output address fields will be populated from the source address fields.
With this option enabled a postcode or outward code found in the
source address fields will be removed.

addressing->apiSettings->referenceDatabase The name of a database configuration to use. This must be the name
of a database configuration (or pool) defined in mcconfig.ini (see
below). Normally this will be “PAF”.

addressing->apiSettings->outputDefaultDPS With this option enabled a default “9Z” DPS code will be output when
the address does not match to premise level but has a valid postcode.

The UK addressing engine uses a service called “Capscan Pool Manager” – this
manages a pool of server processes that show up in task manager as “mcserver”. The

configuration of these server processes is via a file in the UK address data installation
folder, called mcconfig.ini. The matchIT SQL setup process installs and configures this

automatically, so you shouldn’t normally need to do any configuration manually, but

you might want to increase the number of mcserver processes if running on a machine
with multiple cores – to do this increase the values of InitialServers and MaxServers in

parallel. Any changes to mcconfig.ini will take effect when the “Capscan Pool Manager”
service is restarted. The following table lists the other settings in the mcconfig.ini file:

Section Setting Description

Link Host Must be localhost.

Link DefConnectionMode Must be 0.

Link LogFile Location of error log file.

Link LicPath Location of licence files.

Pool1 Name Must be “PAF”.

Pool1 InitialServers The initial number of mcserver processes to launch. If the machine has multiple
cores, set this to about half the number of cores.

Pool1 NewServers The number of new mcserver processes to launch if none are available. This is
only used in the unlikely event of an mcserver process crashing and needing to be
replaced. Set to 1.

Pool1 MaxServers The maximum number of mcserver processes to launch. Set this to the same
value as InitialServers.

Pool1 Module Path and name of the addressing engine dll: cpsvrmc5.dll

Pool1 ServerPath Path and name of the addressing server: mcserver.exe

Pool1 PAF The address database(s) to search. Normally just Capscan.paf.

Pool1 RCDB The folder containing overlay data files. E.g. NSPDO.RCD (National Statistics

matchIT SQL Information Pack Page 23 of 133

Postcode Directory).

Pool1 MCDParam Path and name of a file containing advanced configuration settings for addressing
engine.

Pool1 AddrFrmt Path and name of a file containing address formatting configuration.

7.1.1.3 International Addressing Settings

Setting Description

Addressing->apiSettings->enabledInt When set to “false” the international addressing API is not used even
when licenced. Default “true”.

addressing->apiSettings->outputCasing Used to specify the letter case to use for output fields. Valid options
are ‘Upper’ and ‘Title’ (default is ‘Title’).

addressing->apiSettings->confidenceThreshold Used to specify the threshold at which to stop returning parse
interpretations, as a percentage of the confidence of the top result
(default is 90).

addressing->apiSettings->minimumMatchscore Used to specify the minimum matchscore a record must reach in order
to avoid reversion (default is 0, valid values are 0-100).

addressing->apiSettings->minimumPostcode Used to specify the minimum postcode status a record must reach in
order to avoid reversion (default is 0, valid values are 0-8).

addressing->apiSettings-
>minimumVerificationLevel

Used to specify the minimum verification level a record must reach in
order to avoid reversion (default is 4, valid values are 0-5).

addressing->apiSettings-
>minimumVerificationLevelPerCountry

This can be used to override the minimum verification level (see
above) for individual countries. This setting can contain multiple items
separated by spaces, where each item is of the format
"Country=Level" and Country is the three-letter country code as
defined by ISO 3166-1. For example, "CAN=3 IND=3" provides levels
for Canada and India only whilst all other countries will use the
minimum verification level specified above.

addressing->apiSettings->intelligentScoring If enabled, both the verification status (verified, partial, no match) and
the verification level (delivery point, premise, thoroughfare, town, or
region) are considered; if disabled, only the verification status is used.

addressing->apiSettings->defaultCountry 3-character country code (ISO 3166-1 alpha-3) of the country to
assume when no country name or country code is explicitly specified
and matchIT is unable to determine the country from other address
details.

7.1.1.4 International Addressing Batch Cloud Settings

Setting Description

addressing->apiSettings->cloudKey Authenticates calls to the international addressing cloud web service;
if not specified, then locally installed data will be used.

addressing->apiSettings->cloudUsername Web service username of account to use.

addressing->apiSettings->cloudPassword Password for web service account.

addressing->apiSettings->cloudJobname Arbitrary name for job – useful for tracking itemised billing.

7.1.1.5 Input Fields

Some combination of the following fields must be input to the Generate Corrected
Addresses process.

7.1.1.6 US Addressing Input Fields

Name Description

Organization or Company Specifies the company name.

Suite Specifies the suite or unit.

Address1, Address2 or
Street, Street2

Specifies address lines.

matchIT SQL Information Pack Page 24 of 133

Urbanization Specifies the urbanization.

City or Town Specifies the city.

State or County or Region Specifies administrative area.

Zip or Zipplus4 or Postcode Specifies the 5-digit or 9-digit ZIP code.

Plus4 Specifies the ZIP+4 (if these are in separate columns).

7.1.1.7 UK Addressing Input Fields

Name Description

Organization or Company Specifies the company name.

Address1 – Address8 Up to 8 address lines can be specified.

Town or City Specifies the posttown.

County or Region or State Specifies the county.

Postcode or Zip Specifies the postcode.

7.1.1.8 International Addressing Input Fields

Name Description

Organization or Company Specifies the company name.

Suite Specifies the suite or unit.

Street, Street2, Address1 –
Address12

Up to 12 address lines can be specified.

Urbanization Specifies the urbanization.

City or Town Specifies the city.

State or County or Region Specifies administrative area.

Zip or Zipplus4 or Postcode Specifies the 5-digit or 9-digit ZIP code.

Plus4 Specifies the ZIP+4 (if these are in separate columns).

Country Specifies the country

7.1.1.9 Output Fields

The following result code fields are always output:

Name Description

AddrEngine This indicates the addressing API (UK, US, INTernational) that each record is verified
with (this is only output if licensed for multiple APIs).

PafFlag A numeric representation of the PafDesc column.

PafDesc Indicates the level at which an address was validated (“Verified”, “Good”, “Partial”,
“Tentative”, and “NoMatch”). See engine specific sections below for details.

PafDescExtra

ErrorCode See engine specific description below.

AddrScore See engine specific description below.

UpdateFlag See engine specific description below.

User specified output fields have a source mapping and one or more corrected
mappings.

Source Mapping - The default mapping for data to populate in the selected column

when no address match can be found for the given input. Available values will be the

Address Types assigned to the Source Columns. Select 'None' for no default data.

matchIT SQL Information Pack Page 25 of 133

Corrected Mappings - The corrected elements to populate in the selected column
when a match is found. See the available engine specific output fields in the following

sections. Multiple elements are permitted for a single output column, and will be
separated with a space when combined.

7.1.1.10 UK Addressing Output Fields

Corrected Mappings for UK Addressing may include:

Name Description

Address1-8 A combination of the address elements listed below depending on their availablitity in
the PAF file in the following order, SubBuildingName & BuildingName, BuildingNumber &
Thoroughfare, DependantLocality. The Town and County details are output to specific
Town and County fields.

Organisation The organisation name listed on the PAF file.

BuildingName The building name of the house or commercial premises.

BuildingNumber The number of the building on a thoroughfare.

SubBuilding When a building is split into a number of flats or business units, a sub building name will
be returned.

Thoroughfare The street that contains the delivery point.

DependentThoroughfare If a thoroughfare exists more than once within a town, the PAF file may contain
additional information to uniquely identify each one.

DoubleDependentLocality Further subdivision within a DependentLocality.

DependentLocality Locality (e.g. village or borough name within a town) used to differentiate between
streets with the same name.

Town The postal town for the address

County The country the address relates to.

Postcode The postcode the address relates to.

POBox The POBox listed on the PAF for the address.

AddressKey A combination of the 8 digit address key and 8 digit organisation key that uniquely
identifies each delivery point padded with a leading 0 (where there is no organisation,
0’s will be used).

DeliveryPointSuffix The delivery point associated with the address to uniquely identify the postcode.

Barcode CBC Barcode

Easting 5 digit code relating to the location of the postcode to the National Grid.

Northing 5 digit code relating to the location of the postcode to the National Grid.

CountryCode ONS Country Code:

L93000001 - Channel Islands

E92000001 - England

M83000003 - Isle of Man

N92000002 - Northern Ireland

S92000003 - Scotland

W92000004 - Wales

Latitude WGS84 (World Geodetic Standard 1984) datum Latitude in degrees decimal.

E.g. 51.5267183130

Longitude WGS84 (World Geodetic Standard 1984) datum Longitude in degrees decimal.

E.g. -0.1888023154

LEA Local Education Authority

DHA Health Area Code

PCG Primary Care Trust Code

OSCTY Ward County Code

matchIT SQL Information Pack Page 26 of 133

OSLAUA Ward District Code

OSWard Ward Code

GridQuality Grid Quality

GOR Government Office Region Code

CONS Constituency

EER European Electoral Region

7.1.1.11 UK Addressing Return Codes

This section describes the following return codes: PafFlag, PafDesc, ErrorCode,
AddrScore, UpdateFlag.

The PafFlag and PafDesc fields indicate whether a record has been verified or not

during the addressing process:

PafFlag PafDesc Description

1 Verified The record achieved a premise level match from the addressing engine and
reached the address level score threshold. This is a confident match. The
address and postcode fields will be updated.

2 Good The record achieve a postcode level match and all input address elements were
matched so the result was upgraded to an address level match. The address
and postcode fields will be updated.

3 Partial The record achieved a postcode level match and reached the postcode level
score threshold. The postcode field will be updated.

4 Tentative No Premise information (Org, Sub-building, Building Number, Building Name)
was returned, or the score threshold was not met. The address and postcode
fields will not be updated.

5 NoMatch No match was found.

6 Foreign The record was identified as foreign.

9 ProcessingFailure An error has occurred processing the record.

The ErrorCode field is a 17 character field that indicates the verification status. For

example, “PREMP===CVVVARXXF”. This consists of nine parts in the following format:

ErrorCode part Width Description

Match level 4 Match level can have the following values:

“PREM” – Match to a single premise;

“PCOD” – Match to a complete postcode;

“PART” – Match to a partial postcode;

“NOMA” – No satisfactory match could be found;

“FORN” – Foreign address detected.

Passing level 1 Passing level can have the following values:

“A” – Address level;

“P” – Postcode level;

“N” – No match.

Postcode update 4 Postcode update can have the following values:

“ ” (four spaces) – No postcode or no match;

“----” – Input postcode, no output postcode;

“++++” – Output postcode, no input postcode;

“====” – No change to postcode;

“===C” – Change at postcode level;

matchIT SQL Information Pack Page 27 of 133

“==CC” – Change at sector level;

“=CCC” – Change at outward code level;

“CCCC” – Change at area code level.

Premise flag 1 Premise flag can have the following values:

“X” – Not matched;

“V” – Verified;

“R” – Retained;

“C” – Corrected;

“A” - Added.

Street flag 1 See premise flag.

Locality flag 1 See premise flag.

Postcode flag 1 See premise flag.

Vanity flags 3 Leading flag can have the following values:

“XXX” – Not matched;

“SSS” – Some vanity elements retained;

“RRR” – Vanity elements retained;

“DDD” – Vanity elements removed.

Reformat flag 1 Reformat flag can have the following values:

“X” – Not matched;

“O” – Original address kept as-is;

“F” – Address fully reformatted.

Values for AddrScore are between 0 and 110 – this is essentially a percentage score

boosted by 10 if there are no unmatched words in the input.

The UpdateFlag field indicates whether the record was updated:

UpdateFlag Description

Address Record address and postcode were updated.

Postcode Record postcode was updated.

None Record not updated.

7.1.1.12 UK Addressing Optional Output Fields

The following sets of fields are made available via separately licensed optional datasets.

The Royal Mail UDPRN database provides a Unique Delivery Point Reference Number
for each address that does not change during the lifetime of the premises. This

contains the following fields:

Name Description

UDPRN Unique Delivery Point Reference Number

The Royal Mail Multiple Residence database provides details of addresses that share a
communal front door – typically flats. In these cases, the standard PAF database

contains only one address representing the communal front door, the “owning
address”. The Multiple Residence database has the standard address fields for each of

the flats behind the communal front door plus these additional fields:

Name Description

UMRRN Unique Multiple Residence Reference Number

matchIT SQL Information Pack Page 28 of 133

OwningUDPRN UDPRN of owning DP

OwningAKOK Address and Organisation Key of owning DP

The Royal Mail Not Yet Built database contains addresses where planning permission
has been granted but the premise is not yet built. N.B. these are not plot number

addresses. At the time that planning permission is granted, the local authority assigns
an official address and Royal Mail assigns a postcode. As soon as the premise is able to

receive mail the address is moved from the Not Yet Built database to standard PAF.
The Not Yet Built database has the standard address fields plus these additional fields:

Name Description

NOTYETBUILT Not Yet Built flag – ‘Y’ for all Not Yet Built addresses

NYB_UDPRN Unique Delivery Point Reference Number

The Dun & Bradstreet Business Database consists of over 3.4 million actively trading
organizations, ranging from small businesses and shops through to blue-chip

corporations. In addition to the standard address fields, the D&B Business data has the
following fields:

Name Description

DUNS D-U-N-S Number

TEL Telephone number

FAX Fax number

SIC03 UK 2003 SIC code

SIC72 US ’72 SIC code

NUMEMP Number of employees at site

NUMEMPCO Number of employees at company

HOF Head office flag

TO Turnover

YEARSTAR Year started

The Dun & Bradstreet Business Contact Details Database provides the following contact
details:

Names Description

ExecutiveCount Count of named executives

Ex1_Function … Ex8_Function Executive function

Ex1_FirstName … Ex8_FirstName Executive first name

Ex1_Surname … Ex8_Surname Executive surname

Ex1_Salutation … Ex8_Salutation Executive salutation

Ex1_Sex … Ex8_Sex Executive gender

FinFunction, FinFirstName, FinSurname, FinSalutation, FinSex Contact details for finance responsibility

HRFunction, HRFirstName, HRSurname, HRSalutation, HRSex Contact details for HR responsibility

ITFunction, ITFirstName, ITSurname, ITSalutation, ITSex Contact details for IT responsibility

MktingFunction, MktingFirstName, MktingSurname,
MktingSalutation, MktingSex

Contact details for marketing responsibility

NworkFunction, NworkFirstName, NworkSurname,
NworkSalutation, NworkSex

Contact details for networks responsibility

PurchFunction, PurchFirstName, PurchSurname,
PurchSalutation, PurchSex

Contact details for purchasing responsibility

matchIT SQL Information Pack Page 29 of 133

SalesFunction, SalesFirstName, SalesSurname,
SalesSalutation, SalesSex

Contact details for sales responsibility

DecsFunction, DecsFirstName, DecsSurname, DecsSalutation,
DecsSex

Contact details for decisions responsibility

CommsFunction, CommsFirstName, CommsSurname,
CommsSalutation, CommsSex

Contact details for tech comms responsibility

7.1.1.13 US Addressing Output Fields

Corrected Mappings for US Addressing may include:

Name Description

Company Mapping a company will provide the capability of appending the secondary (suite)
information to a business address providing that the input address is determined to be a
highrise default record.

StreetOnly This is the first half of a parsed version of Street, when inputting an address of “123
Main St Ste 9” in Street, the StreetOnly element would contain only the “123 Main St”
when outputting the corrected mappings. StreetOnly would also contain the PO Box and
#, if the address were a PO Box.

Alternates In situations where there are 2 valid addresses provided (a PO Box and a street
address) – The user can specify a preference to choose when both are valid. When
inputting dual addresses with a PO Box preference set, then the street address would be
moved to alternates, as the zip+4 is assigned based on the primary address. In cases
where there are dual addresses but one is not valid, then the invalid address elements
will be put into the Street2 column.

Street This is a full first address line – it will include the PO Box, or the street and suite
information in a single line.

Street2 Used when there is more than one street input line, if the user has multiple street lines
to input, or if street and suite elements are already parsed then map the columns in as
Street and Street2 – Processing on that address may happen twice in case data comes
in transposed to help compensate for bad elements being put into the street line – when
dealing with dual address elements. When an address is verified – data returned into
street2 is not a valid part of the verified address and may include attention lines, or
other address elements that were not put into Alternates or Leftovers.

Suite This element contains both the Suite descriptor (Ste, Apt, Fl) and the secondary
number. A valid input of “123 Main St Ste 9” in Street, would result in “Ste 9” being
populated into the output column.

Urbanization In Puerto Rico, repeated street names and address number ranges can be found within
the same ZIP Code (e.g., CALLE 1, CALLE 2, etc.). These streets can have the same
house number ranges (e.g., 1-99). In these cases, the urbanization name is the only
element that correctly identifies the location of a particular address.

City The City part of the address.

State State Abbreviations - From AL (Alabama) to WY (Wyoming).

Zip The first five digits of the zip code.

Plus4 The last four digits of the zip code.

ZipPlus4 The Zip and Plus4 concatenated into a single column with the dash between the Zip and
Plus4.

Ex: 90078-0907

DPV This indicates whether an address is a valid delivery point – See Section 6.1.1.2 for
additional information.

DPVnotes USPS Standardized Footnotes – See Section 6.1.1.2 for additional information.

Corrections Same as Errorcode which is output by default– CASS Correction Codes – See Section
6.1.1.2 for more detailed information.

Score Same as Addrscore which is output by default – CASS Certification Return Codes - See
Section 6.1.1.2 for more detailed information.

Housenum This is the first numeric number in the street line.

Examples:

422 W 5th St – Housenum would be 422

matchIT SQL Information Pack Page 30 of 133

PO Box 37 – Housenum would be 37

PreDir The predirectional part of the street line

Example:

422 W 5th St – PreDir would be W

StreetName The name of the street in the street line, or when the address is a PO Box then it will
indicate the PO Box.

Examples:

422 W 5th St – Streetname would be 5th

PO Box 37 – Streename would be PO Box

PostDir Post Directional part of the street line after the street’s suffix

Example:

422 Anderson St NW – Post Direction would be the NW

StreetSuffix The street line’s suffix information – For example, AVE (Avenue), BYU (Bayou), BLVD
(Boulevard) or other type of RD (Road).

Example:

422 W 5th St – Streetsuffix would be St

Sud Secondary Unit Designators - Indicates the type of residential or commercial unit mail is
sent to, such as APT (apartment), STE (suite), or TRLR (trailer).

Example:

422 W 5th St Ste 240 – Sud would be Ste

UnitName The unit number of the address

Example:

422 W 5th St Ste 240 – UnitNum would be 240

PMB This is the number of a Private Mail Box.

Leftovers Preserved information at the end of a street address line that are not part of a valid
address, but makes the address valid when removed.

Dpb A combination of the Delivery point code and the check digit. When printing barcodes
you would concatenate the Zip, plus 4, then this Dpb column.

Delivery Point Code The code by which a mail piece can be sorted by its address. This code is formatted
from the ZIP + 4.

Check Digit The one-digit number that is part of each bar code. It is required for all customer-
generated special services forms to delete errors resulting from manual data entry or
errors from transmitted data.

Barcode DPBC - The delivery point barcode, or DPBC, is a line of short and tall bars that helps
identify a mailing's exact destination. 11-digit code representing a nine-digit ZIP code
plus two additional digits, used to address mail plus the check digit – There are 12 digits
in total. This field contains a numeric representation of the barcode.

Crrt Carrier Route - The addresses which a carrier delivers mail. A Carrier Route includes city
routes, rural routes, highway contract routes, Post Office box sections and general
delivery units.

LotCode eLOT™ sequence number eLOT Travel Line Product was developed to give mailers the
ability to sort their mailings in approximate carrier-casing sequence. To aid in mail
sortation, eLOT contains an eLOT sequence number, this number indicates the first
occurrence of delivery made to the add-on range within the carrier route.

LotDir eLOT Ascending/Descending Indicator The ascending/descending code indicates the
approximate delivery order within the sequence number.

Countynum The FIPS county code is the Federal Information Processing Standard (FIPS) county
code.

CountyName County - The largest administrative division of most states in the United States.

CongDist Congressional District.

matchIT SQL Information Pack Page 31 of 133

LACS LAC Indicator The LAC Address Conversion Service indicator describes records that have
been converted by LAC Service from rural route to city-style addresses so that
emergency vehicles (e.g., ambulances, police cars, etc.) can more easily find these
locations.

DpvAnswer DPV match indicator – First part of the DPV field, see Section 6.1.1.2 for additional
information.

DpvCMRA Commercial Mail Receiving Agency Indicator – Second part of the DPV field, see Section
6.1.1.2 for additional information.

DpvFalsePositive 3rd part of DPV field, indicates whether it was found or not in the false positive table
when DPV processing was performed, see Section 6.1.1.2 for additional information.

Rdi RDI or Residential Delivery Indicator identifies whether an address is classified as
residential or business.

7.1.1.14 US Addressing Return Codes

This section describes the following return codes: PafFlag, PafDesc, ErrorCode,

AddrScore, UpdateFlag, DPV, DPVNotes.

The PafFlag and PafDesc fields indicate whether a record has been verified or not

during the addressing process:

PafFlag PafDesc Description

1 Verified The record received an AddrScore of 0.

2 Good The record achieved an AddrScore of 1.

3 Partial The record achieved an AddrScore of 5, 8 or 9.

4 NoMatch The record did not receive an AddrScore of 0,1,5,8 or 9.

An ErrorCode field will be created containing correction code information as follows:

ErrorCode Description

A Normal street match.

B PO Box match

C Route type match

D Unique Zip match

E Small town match

F Alias match.

G Highrise alternate match.

H Firm match.

I Highrise match.

J Highrise default match.

K Route default match.

L Street name corrected.

M Street Suffix corrected.

N Pre-directional corrected.

O Post-directional corrected.

P City corrected.

Q State corrected.

R Zip corrected.

S Urbanization corrected.

T Zip+4 corrected.

matchIT SQL Information Pack Page 32 of 133

U House number corrected.

V Unit number corrected.

W Secondary unit designator corrected.

X Firm corrected.

Y Street swapped with firm.

Z Street swapped with alternate.

0 Dual address changed to PO Box.

1 Dual address street match.

2 Input city is not preferred but is acceptable.

3 Street standardised.

4 Unit not verified.

5 Leftovers found.

6 Zip move match.

7 LACSLINK match.

8 SuiteLink Match.

The AddrScore field can have the following values:

AddrScore Description

-1 An Error occurred when processing the address.

0 Address was successfully verified.

1 Address is coded but undeliverable (i.e. on side of street known to contain no houses).

2 The zip code was not found and the city and state cannot be used to determine a geographical area to
search.

3 Coding would result in changing both the zip and city.

4 The best match would result in too many suspicious changes.

5 The street was identified as an alias, but was out of the range restricted for that alias.

6 No street address was given.

7 There are no street name matches in the given zip code or in any geographically-related zip code.

8 The street may contain superfluous components which cannot be discarded with confidence.

9 The house number could not be matched.

10 The best match was made to a zip move record but was not an exact match.

11 A zip move match was made, but no exact match could be found in the new zip.

12 Insufficient address information. It’s not even possible to guess as to what might be correct.

13 There are multiple matches with the same degree of confidence.

14 Incorrect suffix, directional, street name or unit resulted in multiple matches with the same degree of
confidence.

15 Incorrect zip, city or urbanization resulted in multiple matches with the same degree of confidence.

16 A Corrected field was too long to fit into the supplied field.

17 Media Error. The database could not be read because of a hardware or system problem.

The UpdateFlag field indicates whether the record was updated:

UpdateFlag Description

Address Record address and zipcode were updated.

None Record not updated.

matchIT SQL Information Pack Page 33 of 133

The DPV field is 5 characters wide; it enhances data by adding the Delivery Point

Validation information generated by the addressIT module. The placement of the
character code indicates which process was performed. The meanings of the five

character positions are summarized in the following table.

DPV character Position Description

DPV
Confirmation
Indicator

1 The DPV Confirmation Indicator is the primary method used by the USPS to
determine whether an address was considered deliverable or undeliverable.

Blank - Address was not assigned a Zip+4 and therefore no DPV processing was
performed.

Y - Address was DPV confirmed for both primary and (if present) secondary
numbers.

D - Address was DPV confirmed for primary number only, and Secondary
number information was missing.

S - Address was DPV confirmed for primary number only and secondary number information was present but unconfirmed.

N - Both Primary and (if present) Secondary number information failed to DPV Confirm. (These are non

DPV CMRA
Indicator

2 CMRA (Commercial Mail Receiving Agency) Indicates a private business that
acts as a mail-receiving agent for specific clients.

Blank - Address was not assigned a Zip+4 and therefore no DPV processing was
performed.

Y - Address was found in CMRA table.

N - Address was not found in CMRA table

DPV False
Positive
Indicator

3 The False Positive table flags the False Positive addresses. This is a flag to
determine whether a mailing list is being generated or created during validation.
Creating a mailing list through DPV certification is not allowed by the USPS.

Blank - Address was not assigned a Zip+4 and therefore no DPV processing was
performed.

Y - Address was found in False Positive table.

N - Address was not found in False Positive table.

Vacant Indicator 4 A delivery point was active in the past, but is currently vacant (in most cases,
unoccupied over 90 days) and not receiving delivery.

Blank - Address was not assigned a Zip+4 and therefore no DPV processing was
performed.

Y - Address was found in the VACANT table.

N - Address was not found in the VACANT table

DSF2 No Stats
Indicator

5 Indicates the address is not receiving delivery, and the address is not counted
as a possible delivery. These addresses are not receiving delivery because A)
delivery has not been established; B) customer receives mail as a part of a
drop; or C) the address is no longer a possible delivery because the carrier
destroys or returns all of the mail.

Blank - Address was not assigned a Zip+4 and therefore no DPV processing was
performed.

Y - Address was found in NOSTATS table.

N - Address was not found in NOSTATS table

The DPVNotes field can contain any combination of the following codes.

USPS Standardized Footnotes Reporting CASS Zip+4 Certification

� AA – Input address matched to the ZIP+4 file.

� A1 – Input address not matched to the ZIP+4 file.

Footnotes Reporting DPV Validation Observations

matchIT SQL Information Pack Page 34 of 133

� BB – Matched to DPV (all components).

� CC – Primary number matched to DPV, but secondary number not matched

(present but invalid).

� F1– Input Address Matched to a Military Address.

� G1– Input Address Matched to a General Delivery Address.

� N1 – Primary number matched to DPV, but high-rise address missing

secondary number.

� M1 – Primary number missing.

� M3 – Non-postal Primary number invalid.

� P1 – Input Address RR or HC Box number Missing.

� P3 – Input Address PO, RR, or HC Box number Invalid.

� U1– Input Address Matched to a Unique ZIP Code.

Footnotes Reporting CMRA Observation

A commercial mail-receiving agency (CMRA) is a private business that acts as the mail
receiving agent for specific clients by providing a delivery address and other services. If

the address matches to a CMRA location one of the following footnotes will appear.

� RR – Matched to CMRA.

� R1 – Matched to CMRA but Secondary Number not Present.

If you require further details of these error codes, please contact the support team at

support@helpit.com.

7.1.1.15 US Addressing Optional Output Fields

TIGER (Topologically Integrated Geographic Encoding and Referencing system) Data is

a USPS data set that allows ZIP codes to be matched to geographical location. A user

will submit a ZIP+4 code and the additional data files will work out the location of the
centroid for this location, and then present longitude and latitude data back in the XML

return value. TIGER Data is enabled for matchIT SQL only if the relevant TIGER Data
files exist in the Addressing Data Directory. These are called tiger.dat and tiger.idx.

The following are the fields available from the TIGER Data processing, and their
descriptions.

Name Description

InputZip The formatted zip code that is passed to the TIGER Data engine. Zips are formatted to
be 9 characters long by the GenerateCorrectedAddresses process, which involves
padding 5 digit zips with 4 zeros to make a Zip+4.

Latitude The angular distance north or south from the equator of a point on the earth's surface,
measured on the meridian of the point.

Longitude The angular distance east or west on the earth's surface, measured by the angle
contained between the meridian of a particular place and some prime meridian, as that
of Greenwich, England, and expressed either in degrees or by some corresponding
difference in time.

Block Blocks are numbered uniquely within each census tract with a 3-character number that
identifies the collection block used in the census and a character block suffix. This
character block suffix is often blank.

CMSA A 4-digit code assigned to areas that consist of primary metropolitan statistical areas.

matchIT SQL Information Pack Page 35 of 133

LatFrom The north/south measurement indicating the beginning point of the address.

LatTo A north/south measurement indicating the ending point of the address.

LongFrom The east/west measurement indicating the beginning point of the address.

LongTo The east/west measurement indicating the ending point of the address.

Plus4 Describes the last four positions of a ZIP+4 Code. Most delivery addresses are assigned
a single ZIP+4 Code. However, large companies may be given a range of ZIP+4 Codes
that can be used to route mail to a specific department.

PMSA A 4-digit code assigned to areas that comprise one or more counties, including a major
population nucleus and nearby communities that have a high degree of interaction.

Side Side indicate what side of the line segment the location occurs at, this is why Lat/Long
From and To are returned, to allow identification of the location based on the range of
the location. The side is loosely related to the side of a street or highway the ZIP+4 is
located, but translating this to an actual side of a road is unreliable.

Tract Small, locally delineated statistical areas within selected counties, generally having
stable boundaries and, when first established by local communities, designed to have
relatively homogeneous demographic characteristics.

MatchLevel The level at which TIGER data was retrieved for the given zip. The levels are zip5, zip7
and zip9.

ProcessingMessage Describes the status of the TIGER data result

7.1.1.16 International Addressing Output Fields

Corrected Mappings for International Addressing may include:

Name Description

Latitude This field holds the WGS 84 latitude in decimal degrees format.

Longitude This field holds the WGS 84 longitude in decimal degrees format.

GeoAccuracy This field holds the GeoAccuracy (GAC) code.

GeoDistance This field holds the radius of accuracy in meters, giving an indication of the likely
maximum distance between the given geocode and the physical location. For
Point-level results (GAC = "PX"), this value may be empty or not returned.

Address This field holds the full address.

Address1-12 These fields can be used to specify input address line data, and on output will
contain the correctly formatted address for mailing in the relevant country, split
into individual address lines.

DeliveryAddress This field holds the full address minus the Organization, Locality hierarchy,
AdministrativeArea hierarchy and PostalCode hierarchy fields, correctly
formatted for mailing in the relevant country, including line breaks specified
using the AddressLineSeparator option.

DeliveryAddress1-DeliveryAddress12 These fields contain the individual lines contained within the DeliveryAddress
field.

CountryName This field holds the ISO 3166 official country name.

ISO3166-2 This field holds the ISO 3166 2-character country code.

ISO3166-3 This field holds the ISO 3166 3-character country code.

ISO3166-N This field holds the ISO 3166 3-digit numeric country code.

SuperAdministrativeArea This field holds the largest geographic data element within a country.

Region This field holds the most common geographic data element within a country. For
instance, USA State, and Canadian Province.

SubAdministrativeArea This field holds the smallest geographic data element within a country. For
instance, USA County.

Town This field holds the most common population center data element within a
country. For instance, USA City, Canadian Municipality.

Thoroughfare This field holds the most common street or block data element within a country.
For instance, USA Street.

matchIT SQL Information Pack Page 36 of 133

DependentThoroughfare This field holds the dependent street or block data element within a country. For
instance, UK Dependent Street.

DoubleDependentLocality This field holds the smallest population center data element, dependent on both
the contents of the Locality and DependentLocality fields. For instance, UK
Village.

DependentLocality This field holds a smaller population center data element, dependent on the
contents of the Locality field. For instance, Turkish Neighborhood.

Building This field contains the descriptive name identifying an individual location, should
one exist.

Premise This field contains the alphanumeric code identifying an individual location,
should one exist.

SubBuilding This field contains the secondary identifiers for a particular delivery point. For
instance, "FLAT 1" or "SUITE 212".

Postcode This field contains the complete postal code for a particular delivery point,
should such detail be able to be determined.

PostcodePrimary This field contains the primary postal code used for a particular country. For
instance, USA Zip, Canadian Postcode, Indian PINcode.

PostcodeSecondary This field contains secondary postal code information, if used in a particular
country and if such detail is able to be determined and reference data is
available. For instance, USA Zip Plus 4.

Organization This field contains the business name associated with a particular delivery point,
should one exist.

PostBox This field contains the post box for a particular delivery point, should one exist.

LeftOvers

Contact

Function

Department

ThoroughfarePreDirection This field holds the prefix directional contained within the Thoroughfare field,
should one exist. For instance, if Thoroughfare contains "N MAIN ST"
ThoroughfarePreDirection contains "N" if a sufficient level of parsing detail exists
for the particular country.

ThoroughfareLeadingType This field holds the leading thoroughfare type indicator within the Thoroughfare
field, should one exist. For instance, if Thoroughfare contains "RUE DE LA
GARE" ThoroughfareLeadingType contains "RUE" if a sufficient level of parsing
detail exists for the particular country.

ThoroughfareName This field holds the name indicator within the Thoroughfare field, should one
exist. For instance, if Thoroughfare contains "N MAIN ST" ThoroughfareName
contains "MAIN" if a sufficient level of parsing detail exists for the particular
country.

ThoroughfareTrailingType This field holds the trailing thoroughfare type indicator within the Thoroughfare
field, should one exist. For instance, if Thoroughfare contains "N MAIN ST"
ThoroughfareTrailingType contains "ST" if a sufficient level of parsing detail
exists for the particular country.

ThoroughfarePostDirection This field holds the postfix directional contained within the Thoroughfare field,
should one exist. For instance, if Thoroughfare contains "MAIN ST N"
ThoroughfarePostDirection contains "N" if a sufficient level of parsing detail
exists for the particular country.

DependentThoroughfarePreDirection See description for ThoroughfarePreDirection

DependentThoroughfareLeadingType See description for ThoroughfareLeadingType

DependentThoroughfareName See description for ThoroughfareName

DependentThoroughfareTrailingType See description for ThoroughfareTrailingType

DependentThoroughfarePostDirection See description for ThoroughfarePostDirection

BuildingLeadingType This field holds the leading building type indicator within the Building field,
should one exist. For instance, if Building contains "BLOC C"
BuildingLeadingType contains "BLOC" if a sufficient level of parsing detail exists
for the particular country.

matchIT SQL Information Pack Page 37 of 133

BuildingName This field holds the name indicator within the Building field, should one exist.
For instance, if Building contains "WESTMINSTER HOUSE" BuildingName
contains "WESTMINSTER" if a sufficient level of parsing detail exists for the
particular country.

BuidlingTrailingType This field holds the trailing building type indicator within the Building field,
should one exist. For instance, if Building contains "WESTMINSTER HOUSE"
BuildingTrailingType contains "HOUSE" if a sufficient level of parsing detail exists
within a particular country.

PremiseType This field contains the leading premise type indicator within the Premise field,
should one exist. For instance, if Premise contains "Plot 7/7A" PremiseType
contains "Plot" if a sufficient level of parsing detail exists within a particular
country.

PremiseNumber This field contains the alphanumeric indicator within the Premise field, should
one exist. For instance, if Premise contains "Plot 7/7A" PremiseNumber contains
"7/7A" if a sufficient level of parsing detail exists within a particular country.

SubBuildingType This field contains the sub-building type indicator within the SubBuilding field,
should one exist. For instance, if SubBuilding contains "FLAT 1" SubBuildingType
contains "FLAT" if a sufficient level of parsing detail exists within a particular
country.

SubBuildingNumber This field contains the alphanumeric indicator within the SubBuilding field,
should one exist. For instance, if SubBuilding contains "FLAT 1"
SubBuildingNumber contains "1" if a sufficient level of parsing detail exists
within a particular country.

SubBuildingName This field contains the descriptive name within the SubBuilding field. For
instance, if SubBuilding contains "BASEMENT FLAT" SubBuildingName contains
"BASEMENT FLAT".

OrganizationName This field contains the name indicator within the Organization field, should one
exist. For instance, if Organization contains ‘Loqate Inc" OrganizationName
contains "Loqate" if a sufficient level of parsing detail exists for the particular
country.

OrganizationType This field contains the trailing type indicator contained within the Organization
field, should one exist. For instance, if Organization contains "Loqate Inc"
OrganizationType contains "Inc" if a sufficient level of parsing detail exists for
the particular country.

PostBoxType This field contains the type indicator contained within the PostBox field, should
one exist. For instance, if PostBox contains "PO BOX 1234" PostBoxType
contains "PO BOX" if a sufficient level of parsing detail exists for the particular
country.

7.1.1.17 International Addressing Return Codes

This section describes the following return codes: PafFlag, PafDesc, ErrorCode,

AddrScore, UpdateFlag.

The PafFlag and PafDesc fields indicate whether a record has been verified or not

during the addressing process:

PafFlag PafDesc Description

1 Verified A complete match was made between the input data and a single record from
the available reference data.

3 Partial A partial match was made.

5 NoMatch No match was found.

9 ProcessingFailure An error has occurred processing the record.

The ErrorCode field is a 14 character field that indicates the verification status. For
example, “V44-I44-P3-100”. This consists of the following single character codes:

ErrorCode part Width Description

matchIT SQL Information Pack Page 38 of 133

Verification
Status

1 Verification status can have the following values

V: Verified - A complete match was made between the input data and a single
record from the available reference data;

P: Partially Verified - A partial match was made between the input data and a
single record from the available reference data;

U: Unverified - Unable to verify. The output fields will contain the input data;

A: Ambiguous - More than one close reference data match;

C: Conflict - More than one close reference data match with conflicting values;

R: Reverted - Record could not be verified to the specified minimum acceptable
level. The output fields will contain the input data.

Post-Processed
Verification
Match Level

1 The post-processed verification match level gives the level to which the input data
matches the available reference data once all changes and additions performed
during the verification process have been taken into account.

5: Delivery Point (PostBox or SubBuilding);

4: Premise (Premise or Building);

3: Thoroughfare;

2: Locality;

1: AdministrativeArea;

0: None.

Pre-Processed
Verification
Match Level

1 The pre-processed verification match level gives the level to which the input data
matches the available reference data prior to any changes or additions performed
during the verification process.

5: Delivery Point (PostBox or SubBuilding);

4: Premise (Premise or Building);

3: Thoroughfare;

2: Locality;

1: AdministrativeArea;

0: None.

Separator 1 -

Parsing Status 1 I: Identified and Parsed - All input data has been able to be identified and placed
into components;

U: Unable to parse - Not all input data has been able to be identified and parsed.

Lexicon
Identification
Match Level

1 The lexicon identification match level gives the level to which the input data has
some recognized form, through the use of pattern matching (e.g. a numeric value
could be a premise number) and lexicon matching (e.g. ‘rd’ could be a
ThoroughfareType, ‘Road’; ‘London’ could be a Locality)

5: Delivery Point (PostBox or SubBuilding);

4: Premise (Premise or Building);

3: Thoroughfare;

2: Locality;

1: AdministrativeArea;

0: None.

Context
Identification
Match Level

1 The context identification match level gives the level to which the input data can
be recognized based on the context in which it appears. This is the least accurate
form of matching and is based on identifying a word as, for instance, a
Thoroughfare based on it being preceded by something that could be a Premise,
and followed by something that could be a Locality, the latter items being
identified through a match against the reference data or the lexicon.

5: Delivery Point (PostBox or SubBuilding);

4: Premise (Premise or Building);

3: Thoroughfare;

matchIT SQL Information Pack Page 39 of 133

2: Locality;

1: AdministrativeArea;

0: None.

Separator 1 -

Postcode Status 2 P8: PostalCodePrimary and PostalCodeSecondary verified;

P7: PostalCodePrimary verified, PostalCodeSecondary added or changed;

P6: PostalCodePrimary verified;

P5: PostalCodePrimary verified with small change;

P4: PostalCodePrimary verified with large change;

P3: PostalCodePrimary added;

P2: PostalCodePrimary identified by lexicon;

P1: PostalCodePrimary identified by context;

P0: PostalCodePrimary empty.

Separator 1 -

Matchscore 3 The accuracy matchscore gives the similarity between the input data and closest
reference data match as a percentage between 0 and 100. 100% means complete
similarity.

The AddrScore field contains the value of Matchscore from the ErrorCode.

The UpdateFlag field indicates whether the record was updated:

UpdateFlag Description

Address Record address and postcode were updated.

None Record not updated.

matchIT SQL Information Pack Page 40 of 133

7.1.2 msp_GenerateNCOAAddresses

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains the table and column mapping specifications.

GenerateNCOAAddresses can be used to keep your database up-to-date as your customers

move or their addresses are corrected. Note that this is available to licensed users only,
and can only process US data.

GenerateNCOAAddresses is available as both a stored procedure and an SSIS task. The

process involves sending data from the input table to an online service, and writing the

received processed data into an output table for subsequent processing and use. (Please
see the Security Protocol for further information.)

Stored Procedure

When running as a stored procedure, the data source is used to configure the input table
and field mappings that are passed to the NCOA service. If this will follow

GenerateCorrectedAddresses, be sure to use the corrected addresses table and its columns

as inputs to the NCOA service.

To use the output NCOA tables and columns in following stored procedures (i.e.

GenerateKeys), no further configuration is necessary because the stored procedure will be
able to determine existence of the NCOA table and automatically make use of it.

SSIS Task

When running as an SSIS task, the user has a choice of how the input table and mappings

are obtained: from a preceding GenerateKeys task (in which case no extra configuration is
necessary), from a preceding GenerateCorrectedAddresses task (in which case only the

required name fields need mapping, while the corrected addresses are automatically used),
or via manual configuration of the connection string, tables, and columns.

To use the output NCOA tables and columns in following tasks (i.e. GenerateKeys), it is

necessary to map the table and its columns in the task.

Setting Description

dataSources Specifies the database connection, table and column
mappings used to define the dataset being processed.

ncoa->customerInfo->listProcessor->name List processor full name.

ncoa->customerInfo->listProcessor->street List processor street address.

ncoa->customerInfo->listProcessor->lastLine List processor city, state, ZIP.

ncoa->customerInfo->listProcessor->phone List processor telephone number.

ncoa->customerInfo->mailer->name Mailer full name.

ncoa->customerInfo->mailer->street Mailer street address.

ncoa->customerInfo->mailer->lastLine Mailer city, state, ZIP.

matchIT SQL Information Pack Page 41 of 133

ncoa->customerInfo->mailer->phone Mailer telephone number.

ncoa->output->table->name Can be used to specify the name of the table that will
be created. If this is left blank, then the table’s name
will be automatically generated.

ncoa->output->optionalFields Any of these fields can be written to the output table.
(See Optional Output Fields below.)

ncoa->options->useMixed If this is set to "true", data is returned in mixed-case
format. If this is set to "false", result data is returned
in all upper case characters.

ncoa->options->useAlias If this is set to "true", alias street names are returned
when they are used in the input. If this is set to
"false", 'official' street names are returned even when
alias street names are used in the input.

(An alias street name is an alternative name for a
street that is acceptable to the USPS. It may be a
name by which a street was formerly known, a
commonly-used nickname for the street, or one the
community prefers to use.)

ncoa->options->validAddressesOnly If this is set to “true”, and
GenerateCorrectedAddresses has been run
beforehand, then only valid addresses (with a score of
0) are processed by the NCOA service.

ncoa->options->blockSize Data is uploaded to the NCOA service in ‘blocks’. This
setting specifies the maximum number of records per
block.

ncoa->options->timeout The maximum time to allow for every 100,000 records
processed, in minutes (the default is 15).

This should be increased if you have a slow internet
connection or are experiencing timeouts.

Timeouts can be disabled by specifying 0.

ncoa->options->retries The maximum number of retry attempts when
processing has failed (the default is 1). Specify 0 to
disable retry attempts.

7.1.2.1 Initial Setup

Before GenerateNCOAAddresses can be used for the first time, it must be configured
on the computer on which matchIT SQL has been installed.

Locate NCOASetup.exe within the matchIT SQL bin folder (for example, the default
location is C:\Program Files\matchIT SQL\bin).

Right-click the file and select “Run as administrator”. Enter the details of a user with

administrative privileges if required.

When the “NCOA Setup” window appears, click PAF Setup then Add New to create a

new PAF account. Fill in the required details as necessary and follow the instructions.
Select the new PAF in the list, click OK, then close the window. Please email or fax a

signed copy of the PAF to helpIT systems. Please allow up to one week for your PAF to
be approved by the USPS and your NCOA account to be set up.

Once your NCOA account has been created, re-run NCOASetup. Click Account to input

details of your Account, which will have been provided by helpIT systems. Ensure
these details are correct by using Test FTP. Click OK. Ensure all details displayed on

the NCOA Setup window are correct, including the Account Statistics, and then close
the window.

GenerateNCOAAddresses is now ready for use.

matchIT SQL Information Pack Page 42 of 133

7.1.2.2 Input Fields

The following fields must be input to the NCOA process, and will be written to the
output table:

Name Description

FullName or Fullname field.

FirstNames and LastName If FullName is not used, then both these fields are required.

Organization Optional. Can be used to specify the company name.

Address1 Sets the “Street” field of the lookup record. Use this field type to pass all information
relating to the primary street address, including the street name, house number,
directional’s, and street suffix. You can also use this field type to pass all other
acceptable forms of primary address information, such as PO Box numbers, rural route
numbers, and highway contract numbers. In addition, suite and apartment information
can be passed with primary address information through the “Street” field. For example,
“123 Main St” and “123 Main St, Apt A” are both acceptable.

Address2 Optional. Can be used to specify any suite and apartment information, if these are in a
separate column from the street part of the lookup address (see Address1 above).

Town Specifies the city.

Region Specifies the state.

Postcode or Specifies the 9-digit ZIP code.

PostOut and PostIn Specifies the 5-digit ZIP code and the ZIP+4, if these are in separate columns.

7.1.2.3 Output Fields

The following fields are written to the output table:

Name Description

ncoaFullName or Only if the fullname was specified on input.

ncoaFirstName and
ncoaLastName

Only if the fullname was not specified on input.

ncoaCompany Optional. Retrieves the company name. This is only output if Organization was passed
in via the input fields, or if this optional field is enabled (see Optional Output Fields
below).

ncoaStreet Retrieves the street part of the output address.

ncoaSuite Optional. Retrieves the suite or apartment information of the output address. This is
only output if Address2 was passed in via the input fields, or if this optional field is
enabled (see Optional Output Fields below).

ncoaCity Retrieves the city from the output address.

ncoaState Retrieves the output state abbreviation.

ncoaZip Retrieves the output ZIP Code.

7.1.2.4 Optional Output Fields

Any of the following fields can be written to the output table:

Name Description

matchIT SQL Information Pack Page 43 of 133

ncoaCOACode This field will be populated with the return codes, see Return Code section for the
description of codes returned.

ncoaCoaFound This field is a True/False flag that tells whether an address change was found.

ncoaMoveEffectiveDate Date of move. mm/yyyy

ncoaCompany Retrieves the company name that was entered through the input “ncoaCompany” field,
if any. AccuMail Move™ will also verify company moves based off this the company field.

ncoaSuite Retrieves output secondary street information, such as suite and apartment information,
if such information was entered through the input “ncoaSuite” field.

ncoaPlus4 Retrieves the output ZIP+4 Code. The ZIP+4 Code is the 4-digit extension only. You can
retrieve the 5-digit ZIP Code using the ncoaZip field type described earlier in this table.

ncoaUrbanization Retrieves output urbanization information for Puerto Rican addresses.

ncoaDP This string consists of a 2-byte delivery point code

ncoaCRRT Retrieves the output carrier route code. This is a 4-digit code assigned to each address
on a mail carrier’s route.

ncoaLotCode Retrieves the output Line of Travel identifier consisting of a 4-digit number, plus a 1-
character sequence code (either "A" for Ascending or "D" for Descending). The 4-digit
number indicates the order in which delivery will be made within a given ZIP+4. The 1-
character sequence code indicates whether delivery will be made in ascending or
descending order. Once a LOT code is appended to your data file records, you can use it
to presort your mailings so that they qualify for Enhanced Carrier Route rates.

ncoaLotDir The order in which the mail carrier delivers mail within a given carrier route. When you
include the Line of Travel information, your mail may be eligible for the USPS Standard
Mail Non-Automation Basic Enhanced Carrier Route Presort Rate.

ncoaCountyNumber Retrieves the output county number. This is the 3-digit USPS code for the county in
which the address resides.

ncoaCountyName Retrieves the output county name.

ncoaCongDistrict Retrieves the output congressional district code. This is a 2-digit identifier for the United
States congressional district to which the input address belongs.

ncoaLACS A 1-character Locatable Address Conversion Service (LACS) code to identify records that
have been converted to the LACS system. The LACS system is being used for many rural
route addresses and city addresses that are being modified to city style addresses so
that emergency vehicles, such as police cars and ambulances, can more easily find these
locations.

ncoaAcsKeyline Retrieves the output Address Change Service (ACS) keyline. The ACS keyline is a code
the USPS uses to uniquely identify any address in the United States. You can use the
ACS keyline to match the records in your mailing list with the list of ACS notifications in
the USPS’s ACS fulfillment files.

ncoaHouseNumber Retrieves the house number for the output street address. For example, if the output
street address is “123 Main St,” the house number is “123.”

ncoaPreDirectional Retrieves the pre-directional for the output street address. For example, if the output
street address is “123 E Main St,” the predirectional designator is “E.”

ncoaStreetName Retrieves the street name for the output street address. For example, if the output
street address is “123 Main St,” the street name is “Main.”

ncoaStreetSuffix Retrieves the street suffix for the output street address. For example, if the output
street address is “123 Main St,” the street suffix is “St.”

ncoaPostDir Retrieves the post-directional for the output street address. For example, if the output
street address is “123 Main St N,” the postdirectional is “N.”

ncoaSUD Retrieves the secondary unit designator (SUD) for the output street address. For
example, if the output street address is “123 Main St Apt 12,” the SUD is “Apt.”

ncoaUnitNum Retrieves the unit number for the output street address. For example, if the output
street address is “123 Main St Apt 12,” the unit number is “12.”

ncoaLeftovers Retrieves any leftover information that was part of the input street address string, but
was not used for obtaining a match. Leftover information is input data that AccuMail had
to discard to correct the address. For example, if the input street address is “123 Main
St Rubbish Here,” the output leftover information is “Rubbish Here.”

ncoaPMB Retrieves the output Public Mailbox address

matchIT SQL Information Pack Page 44 of 133

ncoaDPV Retrieves the 3-byte DVP (Delivery Point Verification) match codes. The match codes
indicate whether or not the address is valid (and if not, why not), whether or not the
address is within a Commercial Mail Receiving Agency (CMRA), and whether or not the
address was flagged as a False Positive. The “DPV” field returns a separate code in each
position of the 3-byte result string, as follows:

BYTE 1

blank – The address was not coded by AccuMail and therefore no DPV processing was
performed.

Y – All delivery point components of the address were DPV validated.

D – The address’s building number was DPV validated, but required unit-level
information is missing.

S – The address’s building number was DPV validated, but the unit number is invalid.

N – The address’s building number is invalid.

BYTE 2

blank – The address was not coded by AccuMail and therefore no DPV processing was
performed.

Y – The address was found in the CMRA (Commercial Mail Receiving Agency) table.

N – The address was not found in the CMRA (Commercial Mail Receiving Agency) table.

BYTE 3

blank – The address was not coded by AccuMail and therefore no DPV processing was
performed.

Y – The address was found in the False Positive table.

N – The address was not found in the False Positive table.

ncoaDPVAnswer blank – The address was not coded by AccuMail and therefore no DPV processing was
performed.

Y – All delivery point components of the address were DPV validated.

D – The address’s building number was DPV validated, but required unit-level
information is missing.

S – The address’s building number was DPV validated, but the unit number is invalid.

N – The address’s building number is invalid.

ncoaDpvCMRA Commercial Mail Receiving Agency

ncoaDpvFalsePositive This is a seed table used by the Delivery Point Verification Service (DPV). It is used by
the service to guard against the possibility of mailers manufacturing artificial mailing lists
from the data in the DPV database of every valid delivery point in the U.S.

ncoaDpvFootnotes Retrieves the 8-byte DPV (Delivery Point Verification) Footnotes string. This field returns
up to four 2-character codes that supplement the DVP field codes (described above)
providing additional information about the DPV match/miss-match. Up to four of the
following 2-character codes will be returned:

AA – The address was successfully coded by AccuMail.

A1 – The address was not successfully coded by AccuMail.

BB – All components of the address were DPV validated.

CC – The address’s building number was DPV validated, but the unit number is invalid.

N1 – The address’s building number was DPV validated, but required unit -level
information is missing.

M1 – A building number is missing for the input address.

M3 – The address’s building number is invalid.

P1 – The input address is missing a required PO, RR, or HC Box number.

RR – The input address was identified by DPV as a Commercial Mail Receiving Agency
(CMRA).

R1 – The input address was identified by DPV as a Commercial Mail Receiving Agency
(CMRA), but required unit-level information is missing.

ncoaLastLine Retrieves the output ‘last line’ string. This output ‘last line’ string is a formatted
city/state/ZIP string that includes the correct ZIP+4 Code. For example, the ‘last line’

matchIT SQL Information Pack Page 45 of 133

information for Datatech SmartSoft is “Agoura Hills, CA 91301-4301.”

ncoaMoveType Indicates the move as Family, Business, or Residential.

ncoaResult Retrieves the output error code. AccuMail assigns an error code if the input record could
not be found in the USPS National Database. This is a 2-byte code that identifies what
was wrong with the input address and why AccuMail could not match it. If AccuMail
matched the input address successfully, then this field returns a blank string.

ncoaCorrections Retrieves the output correction codes string. This string consists of single character
codes that indicate the corrections AccuMail had to make to the input record.

ncoaErrorMessage Retrieves the message text associated with the error code that AccuMail assigned if the
input address could not be matched. This is a descriptive sentence or paragraph that
describes the reason AccuMail could not correct the input record. If AccuMail matched
the input address successfully, then this field returns a blank string.

ncoaWasDigitCoded Returns a 1 for addresses that successfully coded with a plus4. Returns a 0 for uncoded
addresses.

ncoaWasCRRTCoded Returns a 1 for addresses that has returned with a Carrier Route or a 0 if no Carrier
Route was returned.

ncoaWasPlusCoded Returns a 1 for addresses that successfully coded with a plus4. Returns a 0 for uncoded
addresses.

ncoaWasDPBCoded Retrieves the output delivery point barcode string. This string consists of a 2-byte
delivery point code plus a 1-byte checksum digit. These constitute the values required
for producing a Delivery Point Barcode.

ncoaWasDPVCoded Returns a 1 for addresses that were successfully DPV coded or a 0 for addresses that
did not pass DPV validation.

7.1.2.5 Reports

Three reports are created after NCOA processing:

� CASS Certificate (PDF);

� NCOA Details Report - this is a text file that will list all matches found;

� NCOA Processing Summary Report (PDF).

When processing has completed, the reports are moved to the reports folder (as

specified by the path attribute of the outputSettings/reports node in the configuration
file).

7.1.2.6 Return Codes for NCOA

There are two fields AccuMail returns for NCOA. These fields are COACode and
COAFound. COAFound is a True/False flag that tells whether an address change was

found. Below are the codes that could be returned in the COACode field.

Code: Return code.

Description: Explanation of return code.

Address: “Y”=New address provided; “N”=New address not provided.

How: “D”=Derived by data, returned in lieu of 11 digit; “S”=Derived by software.

Code Description Address How

A COA Match - The input record matched to a COA record. A new address Y D

matchIT SQL Information Pack Page 46 of 133

could be furnished. Please Note: If this return code is achieved, no other
matching attempts are permitted regardless of the PROCESSING mode.

77 ANK - ANK will not return the actual new address. ANK will, however,
provide users a return code indicating a probable move occurred in months
19-48, along with the move-effective date. You should suppress these
records from your database or flag these records for deletion and not mail
to them.

N D

66 Daily Delete – The input record matched to a business, individual or
family type COA record with an old address that is present in the daily
delete file. The presence of an address in the daily delete file means that a
COA with this address is pending deletion from the COA master file and that
no mail may be forwarded from this address. This return code may be
returned regardless of the processing mode, matching logic or COA type.
Please Note: If this return code is achieved, no other matching attempts are
permitted regardless of the PROCESSING mode.

N S

00 No Match - The input record COULD NOT BE matched to a COA record. A
new address could not be furnished. This return code may be returned
regardless of the processing mode, matching logic, or COA type. Please
Note: When processing in any mode and this return code is received it is
required to attempt the match again using the next level of matching logic
allowed by the processing mode.

N D

01 Found COA: Foreign Move – The input record matched to a COA record
but the new address was outside the USPS delivery area. This return code
may be returned regardless of the processing mode, matching logic, or COA
type. Please Note: If this return code is achieved, no other matching
attempts are permitted regardless of the PROCESSING mode.

N D

02 Found COA: Moved Left No Address (MLNA) – The input record
matched to a COA record, but the new address was not provided to USPS.
This return code may be returned regardless of the processing mode,
matching logic, or COA type. Please Note: If this return code is achieved
then no other matching attempts are permitted regardless of the
PROCESSING mode.

N D

03 Found COA: Box Closed No Order (BCNO) – The Input record matched
to a COA record containing an old address of PO BOX, which has been
closed without a forwarding address provided. This return code may be
returned regardless of the processing mode, matching logic, or COA type.
Please Note: If this return code is achieved, no other matching attempts are
permitted regardless of the PROCESSING mode.

N D

04 Cannot match COA: Street Address with Secondary – In the
STANDARD mode utilizing Family matching logic the input record was a
potential match to a family type COA record with an old address that
contained secondary information. The input record does not contain
secondary information. The record is a ZIP + 4 street level match. This
address match situation requires individual name matching logic to obtain a
match and individual names do not match. Please Note: This return code is
only obtained when processing in the STANDARD mode using Family
matching logic.

N D

05 Found COA: New 11-digit DPBC is Ambiguous – The input record
matched to a COA record. The new address on the COA record could not be
converted to a deliverable address because the DPBC represents more than
one delivery point. This return code may be returned regardless of the
processing mode, matching logic, or COA type. Please Note: If this return
code is achieved, no other matching attempts are permitted regardless of
the PROCESSING mode.

N D

06 Cannot Match COA: Conflicting Directions: Middle Name Related –
There is more than one COA record for the match algorithm and the middle
names or initials on the COAs are different. Therefore, a single match result
could not be determined. This return code is only obtained when using
individual matching logic. Please Note: If this return code is achieved, no
other matching attempts are permitted regardless of the PROCESSING
mode.

N D

07 Cannot Match COA: Conflicting Directions: Gender Related –There
is more than one COA record for the match algorithm and the genders of
the names on the COAs are different. Therefore, a single match result could
not be determined. This return code is only obtained when using individual
matching logic. Please Note: If this return code is achieved, no other

N D

matchIT SQL Information Pack Page 47 of 133

matching attempts are permitted regardless of the PROCESSING mode.

08 Cannot Match COA: Other Conflicting Instructions – The input record
was a potential match to two COA records. The two records were compared
and due to differences in the new addresses, a match could not be made.
This return code may be returned regardless of the processing mode,
matching logic, or COA type. Please Note: If this return code is achieved,
no other matching attempts are permitted regardless of the PROCESSING
mode.

N D

09 Cannot Match COA: High-rise Default – The input record was a
potential match to a family COA record from a High-rise address ZIP + 4
coded to the building default. This address match situation requires
individual name matching logic to obtain a match and individual names do
not match. Please Note: This return code is only obtained when processing
in the STANDARD mode using Family matching logic.

N D

10 Cannot Match COA: Rural Default – The input record was a potential
match to a family COA record from a Rural Route or Highway Contract
Route address ZIP + 4 coded to the route default. This address situation
requires individual name matching logic to obtain a match and individual
names do not match. Please Note: This return code is only obtained when
processing in the STANDARD mode using Family matching logic.

N D

11 Cannot Match COA: Individual Match: Insufficient COA Name for
Match – There is a COA record with the same surname and address but
there is insufficient first/middle name information on the COA record to
produce a match using individual matching logic. This return code is only
obtained when using individual matching logic. Please Note: When
processing in the STANDARD mode and this return code is received utilizing
Individual Logic, discontinue the Individual logic sequence and go straight
to the FAMILY matching logic.

N D

12 Cannot Match COA: Middle Name Test Failed – The input record was
a potential match to a COA record. A match cannot be made because the
input name contains a conflict with the middle name or initials on the COA
record. This return code is only obtained when using individual matching
logic. Please Note: If this return code is achieved, no other matching
attempts are permitted regardless of the PROCESSING mode.

N S

13 Cannot Match COA: Gender Test Failed – The input record was a
potential match to a COA record. A match cannot be made because the
gender of the name on the input record conflicts with the gender of the
name on the COA record. This return code is only obtained when using
individual matching logic. Please Note: When processing in the STANDARD
mode and this return code is received utilizing Individual logic, discontinue
the Individual logic sequence and go straight to FAMILY matching logic.

N S

14 Found COA: New Address Would Not Convert at Run Time – The
input record matched to a COA record. The new address could not be
converted to a deliverable address. This return code may be returned
regardless of the processing mode, matching logic, or COA type. Please
Note: If this return code is achieved, no other matching attempts are
permitted regardless of the PROCESSING mode.

N S

15 Cannot Match COA: Individual Name Insufficient – The input record
was a potential match to a COA record that contains a first initial and
middle initial/name [ex. C M Smith or C Mary Smith]. A match cannot be
made because the input middle initial/name is missing or does not equal
the middle initial/name on the COA. This return code is only obtained when
using individual matching logic. Please Note: When processing in the
STANDARD mode and this return code is received utilizing Individual logic,
discontinue the Individual logic sequence and go straight to FAMILY
matching logic.

N S

16 Cannot Match COA: Secondary Number Discrepancy – The input
record was a potential match to a street level COA record. However, a
match is prohibited based on one of the following reasons: 1) There is
conflicting secondary information on the input and COA record; 2) the input
record contained secondary information and matched to a family record
that does not contain secondary information. In item 2, this address match
situation requires individual name matching logic to obtain a COA match
and individual names do not match. Please Note: If this return code is
achieved, no other matching attempts are permitted regardless of the
PROCESSING mode.

N S

matchIT SQL Information Pack Page 48 of 133

17 Cannot Match COA: Other Insufficient Name – The input record was a
potential match to a COA record that contains a full first name and full
middle name. The input middle initial/name is missing or different from the
middle name on the COA. A match cannot be made because the first name
on the COA was truncated (drop-n flag) and the middle names must be
equal in order to make this match. This return code is only obtained when
using individual matching logic. Please Note: When processing in the
STANDARD mode and this return code is received utilizing Individual Logic,
discontinue the Individual logic sequence and go straight to FAMILY
matching logic.

N S

18 Cannot Match COA: General Delivery – The input record was a
potential match to a COA record from a General Delivery address. This
address situation requires individual name matching logic to obtain a match
and individual names do not match. Please Note: This return code is only
obtained when processing in the STANDARD mode using Family matching
logic.

N D

19 Found COA: New Address not ZIP+4 coded or New address
primary number not DPV confirmable – There is a change of address
on file but the new address cannot be ZIP+4 coded and therefore there is
no 11-digit DPBC to store or return, or the new address primary number
cannot be confirmed on DPV. This return code may be returned regardless
of the processing mode, matching logic, or COA type. Please Note: If this
return code is achieved, no other matching attempts are permitted
regardless of the PROCESSING mode.

N D

20 Cannot Match COA: Conflicting Directions after re-chaining –
Multiple COA records were potential matches to the input record. The COA
records contained different new addresses and a single match result could
not be determined. This return code may be returned regardless of the
processing mode, matching logic, or COA type. Please Note: If this return
code is achieved, no other matching attempts are permitted regardless of
the PROCESSING mode.

N D

91 COA Match: Secondary Number dropped from COA – The input
record matched to a COA record. The COA record had a secondary number
and the input address did not. Please Note: This return code is derived from
Individual and business matching logic only. If this return code is achieved,
no other matching attempts are permitted regardless of the PROCESSING
mode.

Y S

92 COA Match: Secondary Number Dropped from input address – The
input record matched to a COA record. The input address had a secondary
number and the COA record did not. The record is a ZIP + 4 street level
match. Please Note: This return code is derived from individual and
business matching logic only. If this return code is achieved, no other
matching attempts are permitted regardless of the PROCESSING mode.

Y S

7.1.2.7 Return Codes for NCOA Processing Summary Report

Pre-processes Performed:

� N = None

� Y = Yes but with no data modifications

� D = Yes, data modifications from sources other than postal data

� P = Yes, data modifications from postal data only (i.e.: ZIP+4, DPV)

� B = Yes, data modifications from postal and other sources

Concurrent Processes Performed

� N = None

� Y = Yes but with no data modifications

� D = Yes, data modifications from sources other than postal data

matchIT SQL Information Pack Page 49 of 133

� P = Yes, data modifications from postal data only (ie:ZIP+4, DPV)

� B = Yes, data modifications from postal and other sources

Post-processes Performed

� N = None

� Y = Yes but with no data modifications

� D = Yes, data modifications from sources other than postal data

� P = Yes, data modifications from postal data only (LACSLink ™)

� B = Yes, data modifications from postal and other sources

Standard Output Returned

� Y = All NCOALink required output returned to client

� N = Post-processes modified return information (i.e.: updates applied to list)

� B = Post-processes modified return information; however, separate file

containing all required output data was also returned

Matching Logic Applied

� S = Standard (Business, Individual and Family matches allowed

� I = Individual only

� B = Business only

� C = Individual and Business only

� R = Individual and Family only

Data Returned

� C = COA Data Returned (including footnotes and processing statistics)

� F = Footnotes (no COA data included; may include processing statistics)

� S = Statistics only (no COA data or footnotes provided)

Class of Mail

Alphanumeric. Class of mail to be used for mailings produced from customer mailing

list.

� A = First-Class only

� B = Periodicals only

� C = Standard Mail only

� D = Package Services only

� E = First-Class & Periodicals

� F = First-Class & Standard Mail

� G = First-Class & Package Services

� H = Periodicals & Standard Mail

� I = Periodicals & Package Services

matchIT SQL Information Pack Page 50 of 133

� J = Standard Mail & Package Services

� K = First-Class, Periodicals & Standard Mail

� L = First-Class, Periodicals & Package Services

� M = First-Class, Standard Mail & Package Services

� N = Periodicals, Standard Mail & Package Services

� O = First-Class, Periodical, Standard Mail, Package Services

7.1.2.8 Return Codes for CASS Certification

These are codes given if your address could not be certified. These codes will be

written to the optional field “ncoaResult”:

� Blank – The address has been successfully coded.

� 1 – The address is coded but undeliverable (i.e. on side of street known to
contain no houses).

� 2 – The ZIP code was not found and the city and state cannot be used to

determine a geographical area to search.

� 3 – Coding would result in changing both ZIP and city. This is illegal for PO

BOX and route type addresses.

� 4 – The best match would result in too many suspicious changes.

� 5 – The street was identified as an alias but was out of the range restricted
for that alias.

� 6 – No street address was given.

� 7 – There are no street name matches in the given ZIP code or in any
geographically-related ZIP code.

� 8 – The street may contain superfluous components which cannot be
discarded with confidence.

� 9 – The house number could not be matched.

� 10 – The best match was made to a ZIPMOVE record but was not an exact
match.

� 11 – A ZIPMOVE match was made but no exact match could be found in the
new ZIP.

� 12 – The Early Warning System indicates that an exact match will become
available in the next database update.

� 13 – There are multiple matches with the same degree of confidence. This

may indicate an inconsistency in the USPS data.

� 14 – Incorrect suffix, directional, street name, or unit resulted in multiple

matches with the same degree of confidence.

� 15 – Incorrect ZIP, city, or urbanization resulted in multiple matches with the

same degree of confidence.

� 16 – A corrected field was too long to fit into the supplied field.

� 17 – Media Error. The database could not be read because of a hardware or

system problem.

matchIT SQL Information Pack Page 51 of 133

7.1.2.9 Correction Codes

The correction codes are used to describe what was done to the address in the coding
process. Each coded record will be assigned a string of one or more characters. The

user may assign any size field to hold the correction codes. If the field is too short,

then the codes will be truncated without error. These codes will be written to the
optional field “ncoaCorrections”:

� A – Normal street match.

� B – PO BOX match.

� C – Route type match.

� D – 'Unique ZIP' match.

� E – 'Small town' match.

� F – Alias match.

� G – 'Highrise alternate' match.

� H – Firm match.

� I – Highrise match.

� J – Highrise default match.

� K – Route default match.

� L – Street name corrected.

� M – Street suffix corrected.

� N – Predirectional corrected.

� O – Postdirectional corrected.

� P – City corrected.

� Q – State corrected.

� R – ZIP corrected.

� S – Urbanization corrected.

� T – ZIP+4 corrected.

� U – House number corrected.

� V – Unit number corrected.

� W – Secondary unit designator corrected.

� X – Firm corrected.

� Y – Street swapped with firm.

� Z – Street swapped with alternate.

� 0 – Dual address changed to PO BOX.

� 1 – Dual address street match.

� 2 – Input city is not preferred but is acceptable.

� 3 – Street standardized.

� 4 – Unit not verified.

� 5 – Leftovers found.

� 6 – ZIPMOVE match.

� 7 – LACSLINK match.

matchIT SQL Information Pack Page 52 of 133

� 8 – SuiteLink Match

7.1.2.10 Security Protocol

Executive Summary:

Datatech SmartSoft provides clients with up-to-the-minute address changes for all
United States Addresses via the United States Postal Service (USPS). The company and

USPS maintain a strong commitment to privacy while providing addressing details to
individuals who live within the continental United States.

Documentation:

The purpose of this document is to provide clear and compelling reason(s) for Datatech

SmartSoft clients to allow their databases to be updated with current USPS NCOA Link
move update address information. In keeping with the USPS security regulations,

clients are not able to update these addresses without first:

1. Identification: This is accomplished through Datatech SmartSoft, Inc. NCOA Link

product license keys which are uniquely generated for our clients, then verified during
each Move Update job request.

2. Communications: Datatech SmartSoft transforms customer data into a binary

format prior to data transfer. This transformation ensures that customer data is not

human readable.

3. Intrusion Detection: Datatech SmartSoft takes the appropriate steps to ensure
data is secure, from both internal and external sources.

4. Auditing: All accesses to the AccuMail Move™ server are stored in a relational
database including details related to time, client and activity.

Physical Network Security

Physical Security and Availability of Server(s):

Our managed servers run on HP c-class blade server systems. This enterprise solution

allows full remote control of power, virtual media and virtual connection to redundant
networks and storage area networks. Using the c-7000 enclosures with hot-swap fans

and power supplies, the typical failures resulting in downtime on servers are virtually
eliminated. Blades can be instantly swapped out in the unlikely event of a failure. These

high security facilities guarantee 99.9% up time. The servers are located in the Nevada

NAPs, served by a one billion dollar fiber hub with access to over 100 Tier 1 backbone
with separate and redundant fiber optic paths. Our servers are located with disaster

recovery as a priority and in a region that is free from ice storms, tornadoes,
earthquakes, power outages and other natural disasters.

Electronic Network Security:

matchIT SQL Information Pack Page 53 of 133

Electronic network security and verification is controlled by a variety of methods
including binary transformation of customer data, server-side authorizations of user

specific accounts and passwords, custom product licensing, database authorizations
and client access auditing.

User specific Accounts and Passwords:

SmartSoft clients pass through multiple levels of security when processing each job

request. The first layer is integrated operating system security where each user /
password combination must have access to transfer customer binary data to the server.

The second custom security layer involves validation of each users account, password
and licenses prior to processing any list. These security checks ensure that the user is

valid, has the correct permissions and has adequate credits to process the job. This

check passes through an additional layer of security that accesses our data storage
devices where all account details are stored.

Client Access Auditing:

SmartSoft tracks certain metadata related to each job processed. Tracking usage allows
Datatech SmartSoft, Inc to audit individual usage across accounts, licenses and

products. This does not include tracking or durational storage of specific customer data

beyond what is required for job processing.

SmartSoft tracks processing information related to each job in accordance with the

standard Software Performance Requirements associated with all licensees of the
NCOALink® data from the United States Post Office (USPS®). This information is

generally statistical in nature and summarizes monthly activity for each end user

associated with each Processing Acknowledgement Form (PAF). This does not include
tracking or durational storage of specific customer data beyond that required for job.

matchIT SQL Information Pack Page 54 of 133

7.2 Key Generation

7.2.1 msp_CreateKeysTable

WARNING: This stored procedure has been deprecated and will be removed in a future

release of matchIT SQL. The stored procedure should no longer be used – except for

configurations that have a compatibility setting less than 2.0.0 – and existing processes
modified accordingly.

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains the table and column mapping specifications.

The Procedure simply creates a new table in the database (using the connection string

specified in the datasource) that contains all necessary matching and key fields. The
following XML settings (which can be set using the appropriate page in the Web based UI)

are used during the execution of this procedure:

Setting Description

datasources Specifies the database connection, table and column
mappings used to define the dataset being processed.

The keys table that will be created when this procedure
runs will have the same name as the first mapped table with
a ‘__keys__’ suffix.

generalSettings->deleteKeysTableOnGenerate When this setting is switched on, the keys table (if it already
exists) will be deleted and recreated by this procedure, prior
to being re-populated with keys by the BulkGenerateKeys
stored procedure.

outputSettings->keyColumns Specifies the columns that the keys table is created with
(and populated by BulkGenerateKeys).

Note that all key fields used in the match keys (such as the
fuzzy and exact match keys if running the relevant stored
procedures) must be included in the keys table.

matchIT SQL Information Pack Page 55 of 133

7.2.2 msp_AddKeyFieldsToTable

WARNING: This stored procedure has been deprecated and will be removed in a future
release of matchIT SQL. The stored procedure should no longer be used, and existing

processes modified accordingly.

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains the table and column mapping specifications.

� Table name – specifies the named table that the key columns will be added to.

Simply appends all necessary matching and key fields to the specified table in the database

(using the connection string specified in the datasource).

Note that to use this procedure, your XML must specify only one table in the datasources
section, and this must also be marked as the keys table.

e.g.

<tables>

 <table name="contacts" isKeysTable="true" />

</tables>

matchIT SQL Information Pack Page 56 of 133

7.2.3 msp_GenerateKeys

WARNING: This stored procedure has been deprecated and will be removed in a future
release of matchIT SQL. The stored procedure should no longer be used, and existing

processes modified accordingly.

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains the table and column mapping specifications

This procedure generates the match key field values for all records in the current database
(using the connection string specified in the datasource).

We highly recommended using msp_BulkGenerateKeys, with a separate keys table, as it

provides the best key generation performance.

The following settings are specific to the match key generation. These settings can be

configured through the web UI or directly in the XML configuration file used during
execution of the procedure:

Setting Description

dataSources Specifies the database connection, table and column
mappings used to define the dataset being processed.

Only one table can be marked as the keys table using the
isKeysTable option. The keys table that will be populated
when this procedure runs will have the name specified in
the name attribute of the table marked as the keys table.
The recommendation is to not actually specify a keys table,
so that the name of the keys table will be automatically
generated (see the suffixes in the outputSettings section).

If you are using msp_BulkGenerateKeys (recommended)
then one table may be added in the data source section to
generate a cleaned, standardised version of your input data.
To configure this table, add a table with the isOutputTable
property set to true. This table can be used to proper case
your data, parse names and simple address validation –
please see the matchIT API setting options described below.

generalSettings->ensureUniqueRefIsClustered If enabled, then the uniqueRef column specified in the first
table mapped in a data source is checked to ensure that it is
referenced by a unique clustered index. (Note that this can
be, but is not required to be, a primary key column.)

outputSettings->reports Specifies whether reporting is enabled, what folder the
reports will be produced into, and what report format
should be used.

matchITAPISettings->generate->dropExcludedWords With this property set to True, during the generate step
matchIT SQL will flag any records that contain exclusion
words in any of the key fields (fields such as addressee,
company or the address lines). Such exclusion words
include “Deceased”, “Addressee” (indicating a record may
be a header record) and any other Exclusion type entries in
the NAMES.DAT file. Records are flagged by setting the first
character of the mkDataFlags field in the generated keys
table to “X”.

Note that the default location of the names.dat file is:

C:\Program Files\Common Files\matchIT API\dat

matchITAPISettings->generate->properCase If the ProperCase property is set to True, the fields within
the configured output table created during key generation

matchIT SQL Information Pack Page 57 of 133

(with the exception of premise (i.e. building) numbers and
postcodes) will be correctly cased.

matchITAPISettings->generate->considerCasing If this property is set to True, then matchIT SQL will
consider the casing of the incoming data when it is splitting
the data up for extracting keys, proper casing, and so forth.

For Example, with consider casing switched on the
company:

ABCD Systems Ltd

ABCD would be considered to be an acronym rather than
simply a word (i.e. on output without this option, ABCD
would be output as Abcd).

matchITAPISettings->generate->specialCaseMac Where a last name begins with Mac, when formatting
salutations, matchIT SQL follows this with a small letter or a
capital letter, depending on this property. A value of True
will mean that MACLEAN will be formatted as MacLean. You
can add exceptions to the rule (e.g. Maccabee, Macclesfield,
MacKay, Mackie) to the NAMES.DAT file. If you invariably
want to use a lower case letter following Mac, set this
property to False.

NB: Names beginning Mach are always formatted with a
lower case H, e.g. Machin, Machinery. Names beginning Mc
are formatted with a capital letter following, if they are
greater than 3 characters long.

matchITAPISettings->generate->variableKeysMaxLength This specifies the maximum length of various variable-
length phonetic keys created. Such keys are
PhoneticLastName, PhoneticFirstName,
PhoneticMiddleName, PhoneticOrganizationName1,
PhoneticOrganizationName2, PhoneticOrganizationName3,
PhoneticStreet, and PhoneticTown.

The default is eight characters.

matchITAPISettings->generate->quality->enabled By default, quality scoring is disabled and all quality scores
are 0.

Enabling this feature allows matchIT SQL to generate
quality scores for data fields such as:

Names

Emails

Addresses

Company Names

These results are written to the output table configured in
the Datasource being used during the GenerateKeys
process.

matchITAPISettings->generate->quality->address-
>allowBlankPostcode

If disabled (enabled by default) then addresses without a
postal code are restricted to a maximum quality score of 1.

matchITAPISettings->generate->quality->email->
webmailFiltering

If enabled (default) then email addresses that use webmail
provider (such as Hotmail, Yahoo, & mail.com) domains are
restricted to a maximum quality score of 7.

LOW LEVEL ADVANCED SETTINGS The following settings are low level and most users
will not normally need to modify the default settings.

matchITAPISettings->generate->Name-
>joinMarriedPrefixes

With this property set to True, multiple addressees with the
same last name will be treated as married e.g. input names
of “Mr John Smith and Ms. Mary Smith” or “Mr John Smith &
Mary Smith” would have a Salutation generated of “Mr and
Mrs Smith” and a Contact generated of “Mr and Mrs J
Smith” or “Mr and Mrs John Smith”.

matchITAPISettings->generate->Name-
>generateContact

With this property set to True, matchIT SQL will generate a
contact for the input name. The contact will be structured in
same way as you would expect to find its corresponding
input name on e.g. the front of an envelope. For example,
the input name of “John Smith” or “Mr John Smith” would
result in a generated contact of “Mr J Smith”.

matchIT SQL Information Pack Page 58 of 133

An accurate contact value cannot be generated when
matchIT SQL is unable to determine the gender of an input
name. In this situation, the generated contact would be
equal to the input name. e.g. “J Smith” as an input name
would result in a generated contact of “J Smith”.

matchITAPISettings->generate->Name-
>contactFullname

Set this property to True to include the full first name of any
incoming name in the CONTACT field; just the initial will be
used if the property is False. For example, if the property is
True, and the incoming name is “John Smith”, then the
generated contact will be “Mr John Smith”, if it is False, then
the contact will be “Mr J Smith”.

matchITAPISettings->generate->Name-
>defaultSalutation

This property determines the default salutation, either
where matchIT SQL can't determine one (for example, C
Smith or Chris Smith, which could be either Mr or Ms), or
where the Prefix supplied doesn’t have a salutation rule.

If you include the word ”Dear” as at the start of the default
salutation (i.e. actually specify "Dear Customer" and not just
"Customer", then all the salutations derived by matchIT
SQL will start with the word "Dear" unless the salutation for
the type of title (or prefix) specifies "Title" only. For
example, Mr J Smith will result in a salutation of "Dear Mr
Smith" whereas The Bishop of Liverpool will result in a
salutation of "My Lord".

matchITAPISettings->generate->Name->defaultGender The Default Gender property is the gender to assume when
matchIT SQL can’t determine whether the name is male or
female e.g. Chris Smith, C Smith. If you set this property to
Male or Female, matchIT SQL will assume it to be male or
female accordingly, and develop a salutation using Mr or Ms
as the prefix.

matchITAPISettings->generate->Name-
>UseEquivalentName

If you set the Use Equivalent Name property to True,
matchIT SQL replaces the first name with its equivalent
from the NAMES.DAT file, if there is an entry for the input
first name. This enables, for example, “Tony Smith” and
“Anthony Smith” to be picked up as a match. The initial of
the original first name is stored in the Record.DataFlags
property to enable, for example, “Tony Smith” and “T
Smith” to still be matched.

matchITAPISettings->generate->Name-
>EnhancedDoubleBarrelledLookup

When enabled, this property will cause an unrecognised
middle name to be considered part of a non-hyphenated
double-barrelled last name (for example, where the full
name is John Harrington Jones, the last name will be
considered Harrington -Jones because Harrington is not a
recognised first name).

matchITAPISettings->generate->Name-
>processBlankLastName

With this property enabled, a blank lastname will cause
extra processing to be performed on other input data to
help detect typographical errors. For example, if a
firstname was entered but not a lastname, then it’ll be
assumed that the firstname is in fact the lastname and
match keys will be generated rather than being left blank.

matchITAPISettings->generate->Name-
>replaceAndWithAmpersand

By default, matchIT SQL will convert ‘and’ to an ampersand
when outputting InputFields.Name.Addressee. Disabling
this property will prevent this behaviour.

matchITAPISettings->generate->Name-
>parseNameElements

When enabled, this will cause input name elements
(including prefix, firstnames, and lastname) to be parsed. If
matchIT SQL deems any values to have been entered into
an incorrect field (for example, suffixes and qualifications in
the lastname field), it will reassign these values into the
correct fields.

This property is disabled by default, so that any such
incorrect values are not reassigned.

matchITAPISettings->generate->Name-
>detectInverseNames

With this property enabled, matchIT SQL will attempt to
identify addressee names that have been specified with the
lastname preceding the firstnames, provided a comma

matchIT SQL Information Pack Page 59 of 133

delimiter follows the lastname (for example, “Smith, John”
where Smith is the lastname). Without a comma, a name is
assumed to be in standard left-to-right format, with the
firstnames preceding the lastname.

matchITAPISettings->generate->Name-
>parseAsNormalizedName

When enabled, addressee names are assumed to be in a
delimited normalized format similar to the NormalizedName
value that’s output by during Key Generation. Currently
supported delimiters are spaces, commas, semicolons, and
pipes (‘|’).

matchITAPISettings->generate->Address->Extract-
>premise

This will move or copy premise numbers found in the
address lines into a field labelled PREMISE in the table
configured as an output table during key generation.

matchITAPISettings->generate->Address->Extract-
>thoroughfare

This will move or copy address data recognized as the
thoroughfare of the address (based on Address type entries
found in the NAMES.DAT file) into a field labelled
THOROUGHFARE in the table configured as an output table
during key generation.

matchITAPISettings->generate->Address->Extract-
>town

This will move or copy address data recognized as the town
or city from the address lines to a field labelled TOWN in the
table configured as an output table during key generation.

matchITAPISettings->generate->Address->Extract-
>postTownsOnly

If this is enabled, together with Extract->Town, then only
post towns (i.e. any towns found in the TOWNS.DAT file)
will be moved or copied.

matchITAPISettings->generate->Address->Extract-
>region

This will move or copy US, Canadian or Australian states or
provinces, or valid UK counties (or other regions found in
the NAMES.DAT file), that are found in the address lines
into a field labelled REGION in the table configured as an
output table during key generation.

matchITAPISettings->generate->Address->Extract-
>postcode

This will move or copy UK postcodes, or US zip codes found
in the address lines into a field labelled POSTCODE.

Only UK postcodes with an outward half that is valid
according to the MAILSORT.DAT file will be extracted.

matchITAPISettings->generate->Address->Extract-
>country

This will move or copy valid countries found in the address
lines (based on Country type entries found in the
NAMES.DAT file) into a field labelled ‘COUNTRY’ in the table
configured as an output table during key generation.

matchITAPISettings->generate->Address-
>abbreviateRegion

Set this property to True if you want matchIT SQL to
abbreviate States or Provinces when processing address
lines e.g. to change “Pennsylvania” to “PA” within the table
configured as an output table during key generation.

matchITAPISettings->generate->Address-
>upperCaseTown

This applies to UK addresses only. Set this property to True
to convert the post town in the address to capitals within
the table configured as an output table during key
generation.

Note that, if the ProperCase property is set to False, then
this property is ignored.

matchITAPISettings->generate->Address-
>verifyPostcode

If set to True, this property verifies and corrects the format
of the postcode. Numerics are changed to alphas and vice
versa where appropriate. This feature makes use of the
rules concerning the alphanumeric structure of the
postcode. E.g. it changes “KT22 BDN” to “KT22 8DN” – it
will change 0, 1, 5 and 8 to O, I, S and B, or vice versa, if
that makes the postcode alphanumerically correct. matchIT
SQL will not verify or correct the format of postcodes that
are not in the postcode field. The cleaned postcodes are
output to the table configured as an output table within the
datasource.

matchITAPISettings->generate->Address-
>defaultThoroughfareLine

This property is used when the matchIT SQL is generating a
phonetic address key, for which it needs to know the
thoroughfare (e.g. street) and the town in the address. If it
cannot locate a thoroughfare in the address, usually
because it cannot find a word to indicate one, such as
“Street”, then it will be assumed that the thoroughfare is
the contents of the address line indicated by this property

matchIT SQL Information Pack Page 60 of 133

(if it is greater than zero). For example, if this property is
set to 2, then matchIT SQL will take the contents of address
line 2 as the thoroughfare if it cannot find a thoroughfare
word in the address. This property should only be used if
the addresses in your data are very rigidly structured.

matchITAPISettings->generate->Address-
>numOfLinesToScan

This property enables personal names to be extracted from
address lines. It can be set to 1 or 2. If set to 1, only the
first address line will be scanned for names. If set to 2, both
the first and second address lines will be scanned and have
names extracted from them if found. Any personal names
found can then be used for the generation of Contacts and
Salutations.

If either or both of the Organization->Extract->Jobtitle and
Organization->Extract->Name properties are used in
conjunction with this one, matchIT SQL will not only scan
the ADDRESSEE field for job titles and business names, but
will also scan the corresponding number of address lines.

matchITAPISettings->generate->Address->premiseFirst When parsing an address, this Boolean property indicates
whether to expect the premise or flat number to come first
in address lines when the flat is not explicitly specified (e.g.
“Flat 5”).

matchITAPISettings->generate->Organization->Extract-
>jobTitle

This will copy or extract job titles contained within the
ADDRESSEE field into a field labelled JOB_TITLE within your
output table.

Job Titles are recognized by having a word or string defined
as a Job Title in the NAMES.DAT file e.g. Director.

matchITAPISettings->generate->Organization->Extract-
>name

This will copy or extract any business names contained
within the ADDRESSEE field into a field labelled COMPANY
within your output table.

Business names are recognized by having a word or string
defined as a Business word in the NAMES.DAT file e.g. Ltd.
 Care should be taken when using this property, as words
like "Bank" can be taken to indicate a Business when this
isn't the case (e.g. it may be a last name or part of an
address line).

If you want Extract Company Name processing to be
applied also to the first one or two lines of the address, you
must Set the property Generate->Address-
>NumOfLinesToScan to either 1 or 2.

matchITAPISettings->generate->Organization-
>joinInitials

Set this property to True if you want a group of initials
separated by spaces or dots in a company name to be
concatenated. For example, if this property is True, then “I
B M” and “I.B.M.” will be replaced by “IBM” within the
company field of your output table. Note that, if the
Generate->ProperCase property is set to False, then this
property will have no effect.

matchITAPISettings->generate->Organization-
>useEquivalentName

If this property is set to True, then the equivalent
(according to the NAMES.DAT file) of words indicating a
business name, such as “Motors” or “Services” are included
in the NormalizedOrganization field in the generated keys
table and the corresponding phonetic keys. This enables, for
example, “Wood Green Cars” to match “Wood Green
Motors” well (because “Cars” has an equivalent of
“Motors”), but ensures that neither of them match “Wood
Green Carpets” well.

If you want tight legal matching turned on so that for
example, ‘Wood Green Cars Limited’ will match ‘Wood Green
Cars Ltd’ but ‘Wood Green Cars Group’ will not match ‘Wood
Green Cars Ltd’, then in addition to setting this option to
True, you will also need to modify the
‘matchITAPISettings>datPath’ property to the location of
the tight dat files which can be found in a subfolder called
‘Tight’ under each region folder in C:\matchIT

matchIT SQL Information Pack Page 61 of 133

SQL\config\dataFiles\... .

If you set this property to True, you should change any
words in the NAMES.DAT file that you do want ignored,
such as “Ltd” and “Inc” to Noise type so that they are not
included in the NormalizedOrganization field. As a rule of
thumb, if you are doing business matching on a file that is
very geographically concentrated, that is, contains records
mostly from the same immediate area, then set the
Generate->Organization->UseEquivalentName property to
True, otherwise set it to False.

matchITAPISettings->generate->Organization-
>normalizationTruncation

Disabled by default (i.e. set to 0) If this setting is enabled,
and the organization consists of more than four words, then
the third element of field NormalizedOrganization within
your generated keys table will be truncated to the first N
characters of each word after the first two (where N is the
value of this setting).

matchITAPISettings->generate->Organization-
>ignoreParentheses

With this property enabled, any words that are enclosed
with parentheses within an organization name will be
excluded from the generated phonetic organization keys.
This can be useful for records such as Remnel Ltd and
Remnel (UK) Ltd, to ensure records with these company
names are compared if the phonetic organization keys are
being used as part of composite match keys.

matchITAPISettings->generate->Organization-
>ignoreTrailingPostTown

This property, when enabled, will exclude from the phonetic
organization keys any trailing post town (defined in the
towns.dat file) or UK county that appears at the end of a
company name.

For example, the phonetic organization keys for Handso Ltd
and Handso Essex Ltd will be the same to help ensure such
records will be compared.

7.2.3.1 Match Key Fields

The match key table can contain the following fields:

Column Name Description

(unique ref) Unique reference for each record – either directly specified
for the keys table in the table mappings, or taken from the
first table in the mappings.

mkNameKey Phonetic representation of the name. Optional.

mkOrganizationKey Phonetic representation of the company name. Optional.

mkAddressKey Phonetic representation of the address lines. Optional.

mkPhoneticStreet Phonetic representation of the thoroughfare. Optional.

mkPhoneticTown Phonetic representation of the town/city. Optional.

mkPostOut First part of the postal code/zip. Optional.

mkPostIn Second part of the postal code/zip. Optional.

mkName1 Phonetic representation of the lastname. Optional.

mkName2 Phonetic representation of the firstname. Optional.

mkName3 Phonetic representation of the middle name or initial.
Optional.

mkOrgName1 Phonetic representation of the first word of the company
name. Optional.

mkOrgName2 Phonetic representation of the second word of the company
name. Optional.

mkOrgName3 Phonetic representation of the third word of the company

matchIT SQL Information Pack Page 62 of 133

name. Optional.

mkTelAreaCode Telephone area code. Optional.

mkTelLocalNumber Telephone local number. Optional.

mkFaxAreaCode Fax area code. Optional.

mkFaxLocalNumber Fax local number. Optional.

mkName2Found Indicates whether the firstname was found in the names.dat
file. Optional.

mkNormalizedName Normalised version of all of the consumer name data.

mkGender Generated gender based on the name data provided

mkSuffix Any suffix data extracted from the name fields in the source
data.

mkNormalizedOrganization Normalised version of the Organization name.

mkPremise Premise data extracted from the address lines. Optional.

mkFlatNo Sub premise extracted from the address lines. Optional.

mkDataFlags Flag field generated during key generation. Please see
Appendix B.

mkMasterPriority Master priority calculated for the record based on the
completeness of the data as defined by matchIT SQL’s
Master Priority Matrix. Used during the grouping of matches
to help determine the master record.

mkAddressLength The calculated length of the address data contained in the
source data. Used during the grouping of matches to help
determine the master record.

The optional columns can be configured in the outputSettings->keyColumns node in a
configuration file; most are enabled by default, but key columns not required by any match

keys can be disabled to help improve performance of key generation and deduplication.

Columns not marked as optional will always be added to the keys table and cannot be

disabled.

7.2.4 msp_BulkGenerateKeys

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains the table and column mapping specifications.

As msp_GenerateKeys, except that the matching and key field data is bulk loaded into an
empty keys table. Significantly reduces the time taken for key generation, particularly when

used with large databases.

7.2.5 msp_CreateIndexes

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

matchIT SQL Information Pack Page 63 of 133

� Datasource ID – specifies the data source to be used within the configuration file,
which contains the table and column mapping specifications.

Creates all the nonclustered indexes on the specified keys table required for efficient

clustering of potential matches. Note that the indexes are automatically created when the
keys are generated, so it’s not normally necessary to execute this stored procedure.

matchIT SQL Information Pack Page 64 of 133

7.3 Exact Deduplication

7.3.1 msp_FindExactMatches

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains the table and column mapping specifications.

Finds all exact matching record pairs in the specified database (taken from the supplied
datasource). The following settings are relevant to FindExactMatches:

Setting Description

matchKeys->exactKeys The match keys that will be used are specified
in the XML within the exactKeys keys tags
under the match keys section. Fields can be
concatenated together to create an exact
match key e.g.

<key key1="mkName1" key2="mkName2" />

Which means that all records with the same
phonetic forename and surnames will be
recorded as matches.

dataSources Defines the database connection, tables and
columns of the dataset that is to be matched.

outputSettings->exactMatchesTable Specifies the name of the exact_matches table
that will be produced (which contains the
results from the FindExactMatches processing).

outputSettings->reports Specifies whether reporting is enabled, what
folder the reports will be produced into, and
what report format should be used.

If the ‘excludeExactMatches’ configuration option is enabled (the default), then exact

matches will be automatically excluded when msp_FindMatches is run, to help increase

fuzzy deduplication performance. If the level of duplication is low, however, this option
should be disabled.

As the matching process runs, the results are written out to a results table within your SQL
Server database (in reality the matching results are written to a temporary file and then

bulk loaded on completion of the process). The Find Exact Matches process produces 1

output table as follows (the name of which can be configured through the Web UI or XML):

matchIT SQL Information Pack Page 65 of 133

7.3.1.1 Exact_matches table structure

Column Description

ID Record ID for each matching pair.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the second record in the matching pair.

matchIT SQL Information Pack Page 66 of 133

7.3.2 msp_FindExactOverlap

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used from the configuration

file, which contains the table and column mapping specifications of the first
dataset.

� Overlap datasource ID – specifies the data source to be used from the

configuration file, which contains the table and column mapping specifications of
the second dataset to be used in the overlap.

Finds all records that exactly overlap the specified tables.

The ‘excludeExactMatches’ configuration option can be used with this stored procedure, as

per msp_FindExactMatches.

Setting Description

matchKeys->exactKeys The match keys that will be used are specified in the XML within the
exactKeys keys tags under the match keys section. Fields can be
concatenated together to create an exact match key e.g.

<key key1="mkName1" key2="mkName2" />

Which means that all records with the same phonetic forename and
surnames will be recorded as matches.

dataSources Defines the database connection, tables and columns of the datasets
that are to be matched.

outputSettings->exactMatchesTable The Overlap attribute specifies the name of the exact_matches table
that will be produced (which contains the results from the
FindExactMatches processing).

If the Overlap attribute is empty, the table will be given the same
name as that specified in the name attribute.

outputSettings->reports Specifies whether reporting is enabled, what folder the reports will
be produced into, and what report format should be used.

During processing, exact matches are written to an overlap exact_ matches output table as
configured within the configuration file used.

7.3.2.1 Overlap Exact_matches table structure

Column Description

ID Record ID for each matching pair.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the record in the second supplied datasource that
record1 has matched to.

matchIT SQL Information Pack Page 67 of 133

7.3.3 msp_GroupExactMatches

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used from the configuration file,

which contains the table and column mapping specifications of the first dataset.

After running msp_FindExactMatches, this will group all matching record pairs into sets of

matching records, and will create tables that are referenced by a following instance of
msp_FindMatches.

Setting Description

dataSources Defines the database connection, tables and columns of
the datasets that are to be matched.

outputSettings->exactMatchesTable Name of the table containing the exact matching pairs
results which are to be grouped into matching sets.

outputSettings->groupedExactMatchesTable Name of the output table to be created when the grouping
runs.

7.3.3.1 Exact_matches_grouped table structure

During processing the stored procedure will output the results to the

exact_matches_grouped table (this name can be configured – see above). The

structure of the output table is as follows:

Column Description

ID Record ID for each matching group.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the second record in the matching
relationship.

MatchRef ID of the matching group that the records belong to. Note
that the MatchRef will be the ID value of the first record in
the matching group.

matchIT SQL Information Pack Page 68 of 133

7.3.4 msp_GroupExactOverlap

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used from the configuration

file, which contains the table and column mapping specifications of the first
dataset.

� Overlap datasource ID – specifies the data source to be used from the

configuration file, which contains the table and column mapping specifications of
the second dataset to be used in the overlap.

After running msp_FindExactOverlap, this will group all matching record pairs into sets

of matching records, and will create tables that are referenced by a following instance

of msp_FindOverlap.

Setting Description

dataSources Defines the database connection, tables and columns of
the datasets that are to be used in the overlap.

outputSettings->exactMatchesTable Name of the table containing the exact matching pairs
results which are to be grouped into matching sets.

outputSettings->groupedExactMatchesTable Name of the output table to be created when the grouping
runs. Note that if the overlap attribute is blank, then the
name will be taken from the Name attribute.

7.3.4.1 Overlap Exact_matches_grouped table structure

During processing the stored procedure will output the results to the

exact_matches_grouped table (this name can be configured – see above). The
structure of the output table is as follows:

Column Description

ID Record ID for each matching group.

Record1 Reference ID of the first record in the matching pair taken
from the first datasource.

Record2 Reference ID of the record from the second datasource
that is deemed to match Record1 From the first
datasource.

MatchRef ID of the matching group that the records belong to. Note
that the MatchRef will be the ID value of the first record in
the matching group and will be from the second
datasource.

matchIT SQL Information Pack Page 69 of 133

7.4 Fuzzy Deduplication

7.4.1 msp_FindMatches

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains the table and column mapping specifications.

Finds all matching record pairs in the specified table. There are quite a few configurable
settings for this procedure:

Setting Description

matchKeys->fuzzyKeys The match keys that will be used are specified in the XML within
the fuzzy keys tags under the match keys section. Fields can be
concatenated together to create a match key e.g.

<key key1="mkPostOut" key2="mkName1" />

Which means that all records with the same PostOut value and
same phonetic surname will be compared.

generalSettings->minimumIndividualScore The minimum threshold score required for a match to be
considered an Individual level match.

generalSettings->minimumFamilyScore The minimum threshold score required for a match to be
considered a family level match.

generalSettings->minimumHouseholdScore The minimum threshold score required for a match to be
considered a household level match.

generalSettings->minimumBusinessScore The minimum threshold score required for a match to be
considered a business level match.

generalSettings->minimumCustomScore You may decide to create your own custom match level. This
setting configures the minimum threshold score required for a
match to be considered a custom level match.

generalSettings->preClustering Internal to matching algorithm, leave switched on for best
performance.

generalSettings->stripPuncWhenExactMatching matchIT SQL will ignore punctuation during exact matches when
activated. This setting should only be used when using non
match key columns.

generalSettings->excludeExactMatches If this is enabled (the default) and
msp_FindExactMatches/Overlap is run prior to
msp_FindMatches/Overlap, then the final matches table
produced will not include any exact matches.

The exact matches already found are excluded to boost the
performance of the fuzzy matching step and it is recommended
that you use FindExactMatches if you are processing large
datasets.

Note that the data from the exact_matches table should be
appended to the matches table before the relevant grouping
and output stored procedures are run, unless Merge Exact
Matches is enabled.

generalSettings->flagMatchesAtHigherLevels If this setting is enabled, then individual level matches will
always be marked as family and household level matches.
Family level matches will be marked as household level matches.

matchIT SQL Information Pack Page 70 of 133

outputSettings->matchesTable This setting within the configuration allows you to specify the
name of the matches table that will be produced.

Additionally, for each matching level, you can choose what level
of scoring information you would like written into this table. By
default, only the total scores for each matching level are
enabled, but for example you could add the address component
scores by setting the address property to ‘1’.

outputSettings->largeClustersTable This setting within the configuration allows you to specify the
name of the table containing the large clusters that will be
produced.

ADVANCED SETTINGS The following settings are advanced and most users will
not normally need to modify the default settings.

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchGender

When this property is set to True, potential matches will be
disregarded if their genders differ. If however the gender is
unknown in one or both of the records, the records will
potentially be classed as a match.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchSuffix

When this property is set to True, potential matches will be
disregarded if their suffixes differ. If however the suffix is
unknown in one or both of the records, the records will
potentially be classed as a match.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchLocation

When this property is set to True, potential matches will be
disregarded if their address locations differ.

In detail, this means that the postcodes in the two records (if
present) must achieve at least a probable match with the
address score at least a Possible match, or the address score
must be at least a Likely match irrespective of the postcodes, or
the postcodes must achieve a Sure match irrespective of the
address. This is to prevent false matches where there is some
match on address, but where the addresses are clearly not the
same, for example "10 High Street, Bookham", and "10 High
Street, Alford".

Switch this constraint off if you want to match people or
companies in different locations; you may want to match on
items of data that are independent of location, such as date of
birth or bank account.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchPremise

When this property is set to True, potential matches will be
disregarded if their premise numbers differ. If however the
premise number is unknown (e.g. one record or both records
may contain a premise name), the records will potentially be
classed as a match.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->noOneEmptyPremise

When this property is set to True, potential matches will be
disregarded if one of the addresses is missing a premise
number.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints-
>allowFuzzyPremiseMatch

When both this and MustMatchPremise are set to True, then
potential matches will be disregarded if the premises are not
exact matches (for example, 71 and 71) or if they’re not fuzzy
matches (for example 71 and 71A, 45 and 54, or 71 and 7).

Note that this property has no effect if MustMatchPremise is set
to False because, in that case, fuzzy premises are always
allowed.

Also note that this setting is also available for Family,
Household, Business and Custom match levels.

matchIT SQL Information Pack Page 71 of 133

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchDirectional

When this property is set to True, potential matches will be
disregarded if both addresses (i.e. typically US) have a pre- or
post-directional (e.g. N, North, E, etc.) but they don’t match. For
example, with this constraint enabled, “N Washington Ave” and
“S Washington Ave” will not be matched.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints-
>mustMatchNumericStreetName

When this property is set to True, potential matches will be
disregarded if both addresses (i.e. typically US) have a numeric
street name but they don’t match. For example, with this
constraint enabled, “5th Ave” and “15th Ave” will not be matched.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints-
>mustMatchJointNames

When this property is set to True, potential matches will be
disregarded if one record has a joint name but the other
doesn’t. For example, normal behaviour will match “Mr & Mrs J
Smith” with “Mr J Smith”; setting this property to True will
prevent such matches.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->mustMatchBuilding

When this property is set to True, potential matches will be
disregarded if their building names differ. If however one or
both addresses do not contain a building name, the records will
potentially be classed as a match.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->constraints->noOneEmptyBuilding

When this property is set to True, potential matches will be
disregarded if one of the addresses is missing a building name.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->name

Defines the scores produced when names are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->organization

Defines the scores produced when organisations are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->address

Defines the scores produced when address fields are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->postcode

Defines the scores produced when postcode/zip fields are
compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->telephone

Defines the scores produced when telephones are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->email

Defines the scores produced when emails are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->dateOfBirth

Defines the scores produced when date of birth fields are
compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->weights->customField1

Defines the scores produced when fields defined as customField
are compared.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchIT SQL Information Pack Page 72 of 133

matchITAPISettings->matchingRules-
>individualLevel->nameMatchingMatrix

The location of the name matching matrix.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

matchITAPISettings->matchingRules-
>individualLevel->organizationMatchingMatrix

The location of the Organization Matching Matrix.

Note that this setting is also available for Family, Household,
Business and Custom match levels.

7.4.1.1 Match Scoring

During the FindMatches step, records with the same match keys are grouped together

and then compared with each other. matchIT SQL uses the scoring weights for specific
fields to determine an overall match score. If the score reaches the defined threshold

score for a given match level (configured in the minimum score settings – see above),

then a matching pair will be written to the results table along with the score achieved.

The scoring weights have the following categories:

� Sure – generally means a match is certain (for example when scoring a name

comparison, both the forenames and surnames of the records might be the
same)

� Likely – There are small differences between the records for field being

compared.

� Possible – There are notable differences between the records for field being

compared, but the fields could still be a match.

� OneEmpty – one record has a blank entry for the field being compared, e.g.

one record has no postcode when scoring a postcode/zip comparison.

� BothEmpty – both records have blank entries for the field being compared.

For example, if the minimum score setting for Individual Level matching is 80, then the
combined component scores for Name, Address, Postcode, Email, Telephone,

Organization and Custom must be greater than equal to 80. The component scores

themselves are driven by the weights settings which dictate the score that will be
achieved when specific elements are compared (depending upon how similar those

elements are).

For example, by default when two names are compared at individual level, should they

be considered to be a Sure match, then the name component of the overall score
would be 60. If the postcodes when compared were considered to only be Possible

matches, then the default weight indicates that the postcodes would score 15.

7.4.1.1.1 Name Comparisons

matchIT SQL uses a name matching matrix to decide on whether when comparing

names, records should achieve Sure, Likely, Possible etc. Upon installation of matchIT
SQL, the following folder will be created

C:\matchIT SQL\config\matchingMatrices

Which contains matching matrices for the various matching levels. To illustrate how
the matrix works, consider the following XML:

 <lastnames match="equal">

 <firstnames match="equal">

 <middlenames match="equal">sure</middlenames>

 <middlenames match="both_empty">sure</middlenames>

matchIT SQL Information Pack Page 73 of 133

 <middlenames match="one_empty">sure</middlenames>

 <middlenames match="approx">likely</middlenames>

 <middlenames match="contains">likely</middlenames>

 <middlenames match="unequal">possible</middlenames>

 </firstnames>

This indicates that where the last names for 2 records being compared are the same

and the first names are also the same, then the ultimate result of the comparison
would depend upon the data in the middle name fields, e.g. for Middle names that are

also equal, then the result is sure. The actual score that this sure match would be

worth, would depend on the matching weights defined in your configuration file for the
sure match on name (at the corresponding matching level). There are similar matching

matrices for comparing organization names.

For non name data, the matching result is determined as follows:

7.4.1.1.2 Postcode/Zip Comparisons

The following rules are applied during comparisons of postcode/zip fields:

� equal -> SURE MATCH

� part equal (e.g. 5 digit zips match) -> LIKELY MATCH

� fuzzy differences (1-char insertion/deletion/replacement, 2-char

transposition) -> POSSIBLE

� not equal -> NO MATCH

7.4.1.1.3 UK Specific Postcodes

The following rules are applied during comparisons of UK postcode fields:

� Equal (postout & postin present) -> SURE MATCH

� fuzzy differences (1-char insertion/deletion/replacement, 2-char transposition)
where both postout and postin are present -> LIKELY MATCH

� Equal postouts, but both records missing postin -> LIKELY MATCH

� Equal postouts, but one record missing postin -> POSSIBLE MATCH

� fuzzy differences in the postout sections (1-char

insertion/deletion/replacement, 2-char transposition), but both records
missing postins -> POSSIBLE MATCH

� Other differences -> NO MATCH

7.4.1.1.4 Address Comparisons

Address scores are calculated as a percentage of the address Sure weight.

Likely and Possible are really just thresholds and are not used the same way that they

are for names, companies, postcodes etc.

An address that scores less than Possible will score 0.

If mustMatchLocation is enabled (the default), then a record that scores 0 on postcode

must score at least Likely for address; a record that doesn't score Sure on postcode
must get at least Possible for address; otherwise (if the record scores Sure on

postcode) then the address can score anything.

matchIT SQL Information Pack Page 74 of 133

7.4.1.1.5 Dates of Birth Comparisons

The following rules are applied during comparisons of date of birth fields:

� equal -> SURE MATCH

� fuzzy differences (1-char insertion/deletion/replacement, 2-char

transposition) -> LIKELY MATCH

� containment (if at least 10 chars) -> POSSIBLE

� not equal -> NO MATCH

7.4.1.1.6 Email Comparisons

The following rules are applied during comparisons of email fields:

� equal -> SURE MATCH

� fuzzy (1-char insertion/deletion/replacement, 2-char transposition) -> LIKELY

MATCH

� not equal -> NO MATCH

7.4.1.1.7 Custom Field Comparisons

 The following rules are applied during comparisons of custom fields:

� equal -> SURE MATCH

� fuzzy differences (1-char insertion/deletion/replacement, 2-char

transposition) -> LIKELY MATCH

� containment (if at least 10 chars) -> POSSIBLE

� not equal -> NO MATCH

7.4.1.2 matches table

As the matching process runs, the results are written out to tables within your SQL
Server database. The Find Matches process produces 2 output tables, the first being

the matches table which is described below (the names of which can be configured

through the Web UI or XML):

This table contains the matching pairs that have been identified as a result of the fuzzy

matching process.

matchIT SQL Information Pack Page 75 of 133

Column Description

ID Record ID for each matching pair.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the record that is the second record in the
matching pair.

Level The Level column indicates the matching level(s) at which
a match was found. If it contains a 1 then the two records
match at the Individual level; if 2, then Family level; if 4,
then Household level; and if 8, then Business level.
Multiple levels are indicated by summing values – for
example, 9 would indicate a match at both Individual and
Business levels (1+8), and 15 a match at all four levels
(1+2+4+8).

By default, the Level column is followed by the total score
for the four matching levels. These columns are fully
configurable within a configuration file. Component scores
(for name, organisation, address, etc.) can also be output
for any level(s).

IndividualScore Individual level total match score.

FamilyScore Family level total match score.

HouseholdScore Household level total match score.

BusinessScore Business level total match score.

These following columns relate either to master record identification or bridging prevention and shouldn’t be used
for any other purpose; they are subject to change in future versions of matchIT SQL.

MatchFlags The MatchFlags column is only used when Bridging
Prevention is enabled (see GroupMatches).

MasterPriority1 Used for Master Record Identification.

MasterPriority2 Used for Master Record Identification.

AddressLength1 Used for Master Record Identification.

AddressLength2 Used for Master Record Identification.

Key Indicates through which match key (as specified in your
configuration file) this matching pair was found.

7.4.1.3 large_clusters table

This table lists the clusters that contain too many records (i.e. the Maximum Cluster
Size has been exceeded). Processing the cluster will therefore be skipped to avoid the

stored procedure potentially requiring a significant amount of processing time.

Column Description

ID Record ID.

KeyIndex The composite key being processed.

Search The current composite key value that identifies the current
cluster (for example, the value of mkPostOut+mkName1 –
note that a pipe character separates each key value).

Records The total number of records in the cluster.

MaxRecords The maximum cluster size constant.

matchIT SQL Information Pack Page 76 of 133

7.4.2 msp_FindOverlap

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used within the configuration

file, which contains the table and column mapping specifications. This datasource
will be considered the Main datasource.

� Overlap datasource ID – specifies the data source to be used within the

configuration file, which contains the table and column mapping specifications.
This datasource will be considered the Overlap datasource.

The FindOverlap procedure is essentially the same as FindMatches (and allows for the

same settings), however the outputted results table contains matching pairs where a

record in the update table has matched against a record in the main table.

As the matching process runs, the results are written out to tables within your SQL Server

database. The FindOverlap process produces 2 output tables as follows (the names of
which can be configured through the Web UI or XML).

7.4.2.1 Overlap matches table

This table contains the matching pairs that have been identified as a result of the fuzzy

matching process.

Column Description

ID Record ID for each matching pair.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the record that is the second record in the
matching pair. This record belongs to the second
datasource specified in the parameters.

Level The Level column indicates the matching level(s) at which
a match was found. If it contains a 1 then the two records
match at the Individual level; if 2, then Family level; if 4,
then Household level; and if 8, then Business level.
Multiple levels are indicated by summing values – for
example, 9 would indicate a match at both Individual and
Business levels (1+8), and 15 a match at all four levels
(1+2+4+8).

By default, the Level column is followed by the total score
for the four matching levels. These columns are fully
configurable within a configuration file. Component scores
(for name, organisation, address, etc.) can also be output
for any level(s).

IndividualScore Individual level total match score.

FamilyScore Family level total match score.

HouseholdScore Household level total match score.

BusinessScore Business level total match score.

These following columns relate to either master record identification or bridging prevention and shouldn’t be used
for any other purpose; they are subject to change in future versions of matchIT SQL.

MatchFlags The MatchFlags column is only used when Bridging
Prevention is enabled (see GroupMatches).

matchIT SQL Information Pack Page 77 of 133

MasterPriority1 Used for Master Record Identification.

MasterPriority2 Used for Master Record Identification.

AddressLength1 Used for Master Record Identification.

AddressLength2 Used for Master Record Identification.

Key Indicates through which match key (as specified in your
configuration file) this matching pair was found.

7.4.2.2 large_clusters table

This table lists the clusters that contain too many records (i.e. the Maximum Cluster
Size has been exceeded). Processing the cluster will therefore be skipped to avoid the

stored procedure potentially requiring a significant amount of processing time.

Column Description

ID Record ID

KeyIndex The composite key being processed.

Search The current composite key value that identifies the current
cluster (for example, the value of mkPostOut+mkName1 –
note that a pipe character separates each key value).

Records The total number of records in the cluster.

MaxRecords The maximum cluster size constant.

matchIT SQL Information Pack Page 78 of 133

7.4.3 msp_GroupMatches

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains the database connection string.

� Level – Matching Level at which to group the records (Individual, Family,

Household, Business, Custom).

After running msp_FindMatches, this will group all matching record pairs into sets of

matching records. If you have previously run FindExactMatches, then we recommend that
you copy the matching pairs data from your exact_matches table into you matches table

prior to running this grouping step, unless Merge Exact Matches is enabled.

Setting Description

generalSettings->preventBridgedMatches When enabled matchIT SQL will attempt to stop match
groups containing bridged records such as:

J Smith

John Smith

Julian Smith

In the scenario above, both John Smith and Julian Smith
match with J Smith, but not with each other.

generalSettings->masterRecordIdentification When this setting is active, matchIT SQL will use the
MasterPriority matrix to determine which record in a
matching group should be marked as the master record (i.e.
the best record). When this setting is off, the record with the
lowest unique_reference will be chosen as the master record.

dataSources->ConnectionString Connection string used to connect to the database during
processing.

outputSettings->groupedMatchesTable Name of the group matches output table that will be
produced during the processing of this procedure.

outputSettings->matchesTable Name of the matches table containing the matching pairs that
will be used as the input source for this procedure.

generalSettings->excludeExactMatches The merge attribute of this setting indicates whether to
merge all exact matches, only those for the grouping level
being used, or none. The records are then merged prior to
the grouping.

7.4.3.1 Master Record Identification

As part of the grouping process, matchIT SQL will intelligently choose the master
record for a matching group based on the data contained in the records in the

matching set. The record with the best data is designated as the master record for the
matching group.

matchIT SQL uses a master priority table to determine how to score the quality of the

data held within the matching records. The default location of this file is as follows:

� C:\matchIT SQL\config\masterPriorities\default.xml

matchIT SQL Information Pack Page 79 of 133

The table itself dictates scoring rules for each type of matching field. For example, by
default if the phonetic last name field is empty (mkName1), then the master priority

score will have 99 points subtracted from it. The overall score is the sum of the scores
for each field listed in the matrix.

Note that you can also add Customfields (if you have mapped any in your datasources)
into the matrix for example consider the following rule:

� <rule field="CustomField1" test="value" pos="8" operation="equal"

value="X" score="-33" /> - this rule means that when the fields mapped as
CustomField1 is scored, if the value of the character in position 8 contains an

X, then the total master priority score will have 33 subtracted from it.

Note that when testing the length or value of a field, the following operations are

permitted:

� equal

� notEqual

� greater

� notGreater

� less

� notLess

In the event that you have 2 records both scoring the same master priority score, and

both having the highest score in the matching group, then the record with the biggest
address length (i.e. number of characters in the address fields) will be marked as the

master record.

The record in the matching group with the highest master priority score will be
designated as the Master Record.

7.4.3.2 matches_grouped table structure

During processing the stored procedure will output the results to the matches_grouped

table (this name can be configured – see above). The structure of the output table is as
follows:

matchIT SQL Information Pack Page 80 of 133

Column Description

ID Record ID for each matching group.

Record1 Reference ID of the first record in the matching pair.

Record2 Reference ID of the record that is deemed to match
Record1 From the first datasource.

Score The Score column is copied from the relevant level’s total
score (grouping can only take place on one matching level;
to group using multiple levels requires multiple runs of
GroupMatches/GroupOverlap).

MatchRef Indicates the unique reference of the master record in the
group.

If Master Record Identification is enabled, then this will
indicate the ‘best’ record in the group; if not, then the
MatchRef will simply be set to the lowest unique reference
of all the records in the group (note that the column is a
char column, not an integer column, so a unique ref of 100
will be deemed ‘lower’ than 20 because a left-to-right
character-based comparison is used).

BaseScore Indicates the lowest score of all the matches in the group,
or, if blank, this will indicate a merged exact match

This table lists the records from the matches table after they have been placed into

groups of matches. For example, if record A matches B and B matches C, then all
three records will be placed into the same group.

matchIT SQL Information Pack Page 81 of 133

7.4.4 msp_GroupOverlap

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string.

� Level – Matching Level at which to group the records (Individual, Family,

Household, Business, Custom).

After running msp_FindOverlap, this will group all matching record pairs into sets of

matching records. If you have previously run FindExactOverlap, then we recommend that
you copy the matching pairs data from your exact_matches table into you matches table

prior to running this grouping step, unless Merge Exact matches is enabled.

Setting Description

generalSettings->preventBridgedMatches When enabled matchIT SQL will attempt to stop match
groups containing bridged records such as:

J Smith

John Smith

Julian Smith

In the scenario above, both John Smith and Julian Smith
match with J Smith, but not with each other.

generalSettings->masterRecordIdentification When this setting is active, matchIT SQL will use the
MasterPriority matrix to determine which record in a
matching group should be marked as the master record
(i.e. the best record). When this setting is off, the record
with the lowest unique_reference will be chosen as the
master record.

dataSources->ConnectionString Connection string used to connect to the database during
processing.

outputSettings->groupedMatchesTable Name of the group matches output table that will be
produced during the processing of this procedure.

Note that if the overlap attribute is empty, then the name
in the name attribute will be used.

outputSettings->matchesTable Name of the matches table containing the matching pairs
that will be used as the input source for this procedure.

Note that if the overlap attribute is empty, then the name
in the name attribute will be used.

7.4.4.1 Overlap matches_grouped table structure

During processing the stored procedure will output the results to the matches_grouped
table (this name can be configured – see above). The structure of the output table is as

follows:

matchIT SQL Information Pack Page 82 of 133

Column Description

ID Record ID for each matching group.

Record1 Reference ID of the first record in the matching pair (from
the Main database)

Record2 Reference ID of the record that is deemed to match
Record1 From the Overlap datasource.

Score The Score column is copied from the relevant level’s total
score (grouping can only take place on one matching level;
to group using multiple levels requires multiple runs of
GroupMatches/GroupOverlap).

MatchRef Indicates the unique reference of the master record in the
group.

In the case of an overlap, the MatchRef column indicates
the unique reference of the record from the overlap table;
in effect, it’s a simple copy of the Record2 column.

BaseScore Indicates the lowest score of all the matches in the group.

This table lists the records from the matches table after they have been placed into
groups of matches. For example, if record A matches B and B matches C, then all

three records will be placed into the same group.

matchIT SQL Information Pack Page 83 of 133

7.5 Output

7.5.1 msp_OutputMatchingPairs

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string.

After running msp_FindMatches, this will output all matching record pairs to the

‘matching_pairs’ table, ordered by the Score column.

Setting Description

outputSettings->matchingPairsTable Specifies the name of the matching pairs table that will be
produced.

outputSettings->matchesTable Specifies that name of the matches table that will be
required to generate the matching pairs table.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the matches
table to produce the matching_pairs table.

7.5.1.1 Matching_pairs table

Column Description

Score Match Score for the matching pair.

ID_1 Reference ID of the first record in the matching pair.

ID_2 Reference ID of the second record in the matching pair.

MatchRef

Note that the matching_pairs table also contains the source fields for each record

mapped in the datasource within the configuration file, allowing you to view the actual
data that has matched.

matchIT SQL Information Pack Page 84 of 133

7.5.2 msp_OutputMatchingGroups

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string.

After running msp_GroupMatches, this will output all groups of matching records to the

‘matching_groups’ table, ordered by the MatchRef column.

Setting Description

outputSettings->matchingGroupsTable Specifies the name of the matching groups table that will
be produced.

outputSettings->groupedMatchesTable Specifies that name of the matches_grouped table that will
be required to generate the matching_groups table.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the matching_pairs
table.

7.5.2.1 Matching_groups table

Column Description

MatchRef Reference ID for the matching group

ID ID of record

Note that the matching_groups table also contains the source fields for each record
mapped in the datasource within the configuration file, allowing you to view the actual

data that has matched.

matchIT SQL Information Pack Page 85 of 133

7.5.3 msp_OutputDuplicates

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string.

After running msp_GroupMatches, this will output all the non-master duplicate records (i.e.

all records where the unique ref is different from the MatchRef) that are to be removed

from the source table(s).

Setting Description

outputSettings->duplicatesTable Specifies the name of the duplicates table that will be
produced.

outputSettings->groupedMatchesTable Specifies that name of the matches_grouped table that will
be required to generate the matching_groups table.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the duplicates table.

7.5.3.1 Duplicates table

This table contains the non-master duplicate records following the matching process.
The structure of the table is determined by the fields mapped in the datasource (i.e. it

contains an ID field, but also the fields that you have mapped in the datasource).

matchIT SQL Information Pack Page 86 of 133

7.5.4 msp_OutputDedupedTable

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string.

This effectively produces the opposite of msp_OutputDuplicates. All records from source

table(s) are output, except for the identified non-master duplicate records.

Setting Description

outputSettings->dedupedTable Specifies the name of the deduped table that will be
produced.

outputSettings->groupedMatchesTable Specifies that name of the matches_grouped table that will
be required to generate the matching_groups table.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the deduped table.

7.5.4.1 Deduped table

This table contains only the master records following the matching process. The
structure of the table is determined by the fields mapped in the datasource (i.e. it

contains an ID field, but also the fields that you have mapped in the datasource).

matchIT SQL Information Pack Page 87 of 133

7.5.5 msp_TagMatchingResultsWithGroupLevel

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string

� Level – can be Individual, Family, Household, Business or Custom.

This procedure renames any of the grouping related tables produced by the preceding four
procedures and the msp_GroupMatches Procedure. Each table is renamed by giving it a

suffix matching the value passed in the level parameter.

Setting Description

outputSettings->duplicates Name of the duplicates table to be renamed.

outputSettings->dedupedTable Name of the deduped table to be renamed.

outputSettings->matchingGroupsTable Name of the matching_groups table to be renamed.

outputSettings->groupedMatchesTable Specifies that name of the matches_grouped table to be
renamed.

dataSources Specifies the datasource containing the connection string
to the database.

matchIT SQL Information Pack Page 88 of 133

7.5.6 msp_OutputOverlapMatchingPairs

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used within the configuration

file, which contains database connection string and table/column mappings.

� Overlap datasource ID – specifies the second data source to be used within the

configuration file, which contains database connection string and table/column

mappings.

After running msp_GroupOverlap, this will output all record pairs that match between the

two datasources to the ‘matching_pairs’ table, ordered by the Score column.

Setting Description

outputSettings->matchingPairsTable The Overlap attribute specifies the name of the overlap
matching pairs table that will be produced. If the Overlap
attribute is empty, then the name attribute will be used.

outputSettings->matchesTable The Overlap attribute specifies that name of the overlap
matches table that will be required to generate the
matching pairs table.

If the Overlap attribute is empty, then the name attribute
will be used.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the matches
table to produce the overlap matching_pairs table.

7.5.6.1 Overlap Matching_pairs table

Column Description

Score Match Score for the matching pair.

ID_1 Reference ID of the first record in the matching pair.

ID_2 Reference ID of the second record in the matching pair
which will be a record from the second datasource.

MatchRef

Note that the overlap matching_pairs table also contains the source fields for each
record mapped in the datasource within the configuration file, allowing you to view the

actual data that has matched.

matchIT SQL Information Pack Page 89 of 133

7.5.7 msp_OutputOverlapMatchingGroups

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used within the configuration

file, which contains database connection string and table/column mappings.

� Overlap datasource ID – specifies the second data source to be used within the

configuration file, which contains database connection string and table/column

mappings.

After running msp_GroupOverlap, this will output all groups of matching records that
match between the two datasources to the ‘matching_groups’ table, ordered by the

MatchRef column.

Setting Description

outputSettings->matchingGroupsTable The Overlap attribute specifies the name of the matching
groups table that will be produced.

If the Overlap attribute is empty, then the name attribute
will be used.

outputSettings->groupedMatchesTable The Overlap attribute specifies that name of the
matches_grouped table that will be required to generate
the matching_groups table.

If the Overlap attribute is empty, then the name attribute
will be used.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the matching_pairs
table.

7.5.7.1 Overlap Matching_groups table

Column Description

MatchRef Reference ID for the matching group; this will reference a
record in the second datasource that is considered to be
the master record for the matching group.

ID_1 ID of record from the first datasource.

ID_2 ID of record from the second datasource.

Note that the overlap matching_groups table also contains the source fields for each
record mapped in the datasources within the configuration file, allowing you to view

the actual data that has matched.

matchIT SQL Information Pack Page 90 of 133

7.5.8 msp_OutputOverlapDuplicates

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used within the configuration

file, which contains database connection string and table/column mappings.

� Overlap datasource ID – specifies the second data source to be used within the

configuration file, which contains database connection string and table/column

mappings.

After running msp_GroupOverlap, this will output all duplicate records from datasource2
that overlap with datasource1.

Setting Description

outputSettings->duplicatesTable The Overlap attribute specifies the name of the duplicates
table that will be produced.

If the Overlap attribute is empty, then the name attribute
will be used.

outputSettings->groupedMatchesTable The Overlap attribute specifies that name of the
matches_grouped table that will be required to generate
the duplicates table.

If the Overlap attribute is empty, then the name attribute
will be used.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the duplicates table.

7.5.8.1 Overlap Duplicates table

This table contains the non master duplicate records following the matching process.

The structure of the table is determined by the fields mapped in the datasource (i.e. it

contains an ID field, but also the fields that you have mapped in the datasource).

matchIT SQL Information Pack Page 91 of 133

7.5.9 msp_OutputOverlapDedupedTable

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Main datasource ID – specifies the data source to be used within the configuration

file, which contains database connection string and table/column mappings.

� Overlap datasource ID – specifies the second data source to be used within the

configuration file, which contains database connection string and table/column

mappings.

This effectively produces the opposite of msp_OutputOverlapDuplicates. All records from
datasource2 are output, except for the duplicate records.

Setting Description

outputSettings->dedupedTable The Overlap attribute specifies the name of the deduped
table that will be produced.

If the Overlap attribute is empty, then the name attribute
will be used.

outputSettings->groupedMatchesTable The Overlap attribute specifies that name of the
matches_grouped table that will be required to generate
the deduped table.

If the Overlap attribute is empty, then the name attribute
will be used.

dataSources Specifies the datasource containing the specification for
the source data that will be combined with the
matches_grouped table to produce the deduped table.

7.5.9.1 Overlap Deduped table

This table contains the master records following the matching process. The structure of
the table is determined by the fields mapped in the datasource (i.e. it contains an ID

field, but also the fields that you have mapped in the datasource).

matchIT SQL Information Pack Page 92 of 133

7.5.10 msp_TagOverlapMatchingResultsWithGroupLevel

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

� Level – can be Individual, Family, Household, Business or Custom.

This procedure renames any of the grouping related tables produced by the preceding four
procedures and the msp_GroupOverlap Procedure. Each table is renamed by giving it a

suffix matching the value passed in the level parameter.

Setting Description

outputSettings->duplicates Overlap attribute specifies the name of the duplicates table
to be renamed.

If the Overlap attribute is empty then the name attribute
will be used.

outputSettings->dedupedTable Overlap attribute specifies the name of the deduped table
to be renamed.

If the Overlap attribute is empty then the name attribute
will be used.

outputSettings->matchingGroupsTable Overlap attribute specifies the name of the
matching_groups table to be renamed.

If the Overlap attribute is empty then the name attribute
will be used.

outputSettings->groupedMatchesTable Overlap attribute specifies the name of the
matches_grouped table to be renamed.

If the Overlap attribute is empty then the name attribute
will be used.

dataSources Specifies the datasource containing the connection string
to the database.

matchIT SQL Information Pack Page 93 of 133

7.6 Triggers

7.6.1 msp_CreateTableTriggers

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains database connection string and table/column mappings.

Creates dynamic key update triggers on each table defined in the specified data source in

the specified configuration file. This means that the keys table for the selected datasource
will automatically be updated should records in the source data be modified in some way.

7.6.2 msp_DeleteTableTriggers

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

Deletes dynamic key update triggers on each table defined in the specified data source in

the specified configuration file.

7.6.3 msp_GenerateSingleKeys

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

� Record ID – unique ref of the record to update the keys for.

� Table Name – name of the keys table to be updated.

� Action – “update” or “delete”

This method is called by the key update triggers on tables defined in the data source. It
updates, creates or deletes the keys entry(s) for the specified record in the specified data

source.

matchIT SQL Information Pack Page 94 of 133

7.7 Miscellaneous

7.7.1 msp_CreateCustomMatchesTable

WARNING: This stored procedure has been deprecated and will be removed in a future
release of matchIT SQL. The stored procedure should no longer be used, and existing

processes modified accordingly.

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

� Table name suffix – table in which to create the primary key column.

Creates a custom schema of a matches table from the standard matches table as defined

in the configuration object for the specified data source. Relies on a matches table existing

in the specified data source. The table name defined in the configuration can be given a
suffix as the third parameter of the procedure if creating multiple instances to distinguish

between them.

7.7.2 msp_CreateCustomGroupedMatchesTable

WARNING: This stored procedure has been deprecated and will be removed in a future

release of matchIT SQL. The stored procedure should no longer be used and existing
processes modified accordingly.

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

� Table name suffix – table in which to create the primary key column.

Creates a custom schema of a grouped matches table from the standard matches_grouped
table as defined in the configuration file for the specified data source. Relies on a

matches_grouped table existing in the specified data source. The table name defined in
the configuration can be given a suffix as the third parameter of the procedure if creating

multiple instances to distinguish between them.

7.7.3 msp_CreateUniqueRefField

Input Parameters:

matchIT SQL Information Pack Page 95 of 133

� Configuration file – the file path of the configuration file to be used when this
procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,
which contains database connection string and table/column mappings.

� Table name – table in which to create the primary key column.

� Column name – name of the column to create.

Creates a primary key column with a specified name within the named table in the data

source in the given datasource.

7.7.4 msp_SingleRecordMatch

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this

procedure is run.

� Datasource ID – specifies the data source to be used within the configuration file,

which contains database connection string and table/column mappings.

� Fullname

� Company

� Address1

� Town

� Region

� Postcode

This procedure finds all records that match a generated record made up from the

parameters supplied as arguments for the procedure (Namely full name, company,

address1, town, region, postcode), in the specified data source in the specified
configuration.

The following results are returned:

matchIT SQL Information Pack Page 96 of 133

Column Description

RecordID Reference ID for the matching record within the specified
datasource.

Level The Level indicates the matching level(s) at which a match
was found. If it contains a 1 then the two records match
at the Individual level; if 2, then Family level; if 4, then
Household level; and if 8, then Business level. Multiple
levels are indicated by summing values – for example, 9
would indicate a match at both Individual and Business
levels (1+8), and 15 a match at all four levels (1+2+4+8).

By default, the Level column is followed by the total score
for the four matching levels. These columns are fully
configurable within a configuration file. Component scores
(for name, organisation, address, etc.) can also be output
for any level(s).

IndividualScore Individual level score.

FamilyScore Family level score.

HouseholdScore Household level score.

BusinessScore Business level score.

7.7.5 mfn_SingleRecordMatch

This TVF (table-valued function) is identical to the msp_SingleRecordMatch stored

procedure, except that its output is a temporary table that can be queried using a SELECT
statement – for example, SELECT * FROM mfn_SingleRecordMatch(arguments).

The output is as msp_SingleRecordMatch – i.e. the total score for the four matching levels

(see section 7.7.4 above).

7.7.6 mfn_SingleRecordMatch2

This TVF (table-valued function) is identical to the mfn_SingleRecordMatch TVF, except
that its input is an XML query string.

The XML query string has the following general format:

<query>
 <inputs>

 <fieldName>value</fieldName>
 <fieldName>value</fieldName>

 <fieldName>value</fieldName>

 …
 </inputs>

</query>

Where fieldname is any valid matchIT input field. For example:

<query>

 <inputs>

 <fullName>gill laughton</fullName>
 <organization>gretch ltd</organization>

 <address1>165 clock tower road</address1>
 <town>isleworth</town>

 <region>middlesex</region>

 </inputs>
</query>

matchIT SQL Information Pack Page 97 of 133

7.7.7 mfn_SingleRecordMatchEx

As the mfn_SingleRecordMatch TVF, except that all available score columns are output –

i.e. the total score plus all component scores for each level.

7.7.8 mfn_SingleRecordMatchEx2

As the mfn_SingleRecordMatchEx TVF, except that its input is an XML query string (see
section 7.7.6 above).

matchIT SQL Information Pack Page 98 of 133

7.7.9 mfn_SingleGenerateKeys

Input Parameters:

� Configuration file – the file path of the configuration file to be used when this
function is run.

� Datasource ID – specifies the data source to be used within the configuration file.

� XML – specifies one or more data items for which to generate keys, in an XML-

formatted string.

This function generates the keys only for the data passed into the function, and outputs a

table containing a single row – for example, SELECT * FROM
dbo.mfn_SingleGenerateKeys(arguments).

The XML data must be specified in the format “<data attribute=”value” … />” where
attribute must be one of the standard matchIT API field types:

fullName jobTitle postIn

prefix address1-9 country

lastName flatNo deliveryPoint

firstNames premise telephone

initials thoroughfare fax

qualification town dateOfBirth

suffix region email

organization postcode customField1-9

department postOut

The XML data can contain any number of attribute=value pairs. Here’s an example:

SELECT * FROM dbo.mfn_SingleGenerateKeys(‘config’, ‘datasource’,
‘<data fullName=”John Smith” organization=”helpIT systems” />’)

matchIT SQL Information Pack Page 99 of 133

7.8 General Progress Logging Table

The following table is produced during processing which logs each matchIT SQL process that

runs.

7.8.1 log

The log table is written to, by the following procedures:

� BulkGenerateKeys

� GenerateKeys

� FindMatches

� FindOverlap

� FindExactMatches

� FindExactOverlap

� OutputMatchingPairs

� OutputMatchingGroups

� OutputDedupedTable

� OutputDuplicates

� OutputOverlapMatchingPairs

� OutputOverlapMatchingGroups

� OutputOverlapDuplicates

� OutputOverlapDedupedTable

and contains progress information from these potentially long-running stored procedures.

matchIT SQL Information Pack Page 100 of 133

Column Description

ID Reference ID for the matching group; this will reference a record in the second
datasource that is considered to be the master record for the matching group.

Proc Column identifies a running stored procedure.

Time Time is the date and time of the log message.

Code The Code column indicates the type of XML-formatted value that is found in the
Data column:

10 – Started: the stored procedure has started.

20 – KeyStarted: processing of a composite key has started
(FindMatches/FindOverlap/FindExactMatches/FindExactOverlap).

25 – RecordsSelected: the SELECT statement has completed.

30 – PreClustered: pre-clustering has completed (FindMatches/FindOverlap).

50 – Progress: indicates processing progress.

70 – KeyFinished: the current composite key has finished
(FindMatches/FindOverlap/FindExactMatches/FindExactOverlap).

90 – Finished: the stored procedure has finished.

(Note that future versions of matchIT SQL will likely log addition information.)

Data Progress message description.

matchIT SQL Information Pack Page 101 of 133

8 Summary Reporting

matchIT SQL is able to produce a summary report on completion of certain stored processes.

These reports can be output to a file using one of several available formats (note that the

‘type’ attribute is used within XML configuration files to specify the reports’ format):

� PDF (Portable Document Format; type=pdf).
� RTF (Rich Text Format; type=rtf).

� Microsoft Excel (97-2003; type=xls).

� Microsoft Excel (97-2003; raw data only; type=xls2).
� HTML 3.2 (tables; type=html3).

� HTML 4.0 (type=html4).
� Crystal Report (type=rpt).

Additionally, report statistics are output to a new uniquely-named table within the data source.

Reports are produced for the following stored procedures. In most cases the collected data is

either self-explanatory or uses standard helpIT terminology, unless detailed below:

� GenerateCorrectedAddresses.

� GenerateKeys – Note excluded records can be identified if the first character of a
mkDataFlags value is an ‘X’.

� BulkGenerateKeys - See GenerateKeys.

Note that you can use the setting outputSettings->reports in your configuration file to specify

whether reports should be generated or not.

It is possible to incorporate a custom logo into the reports in place of the default matchIT SQL

logo that displays in the top right of the first page of each report. To do this, simply save your
logo as “ReportLogo.jpg” and place it in the matchIT SQL bin directory (which by default is

C:\Program Files\matchIT SQL\bin). Once in this location, the report creation process will

automatically detect and use the custom logo you have provided. With regards to the
dimensions of the logo, to match the size of the default matchIT SQL logo you should create

the logo on a canvas of 371px wide by 106px high.

As well as incorporating a custom logo into the report, it is also possible to include a website

address and contact name (each of which appear in that order under the logo on the top right

of the report). To do this, simply add a ‘contactWebsite’ and ‘contactName’ to the ‘reports’
node in the xml configuration file that is being called by the stored procedures (or the

template being used in the case of SSIS). An example of this can be seen below. Note that
the attribute names are case sensitive.

<reports enabled="true" path="C:\matchIT SQL\reports" format="pdf" schema="reports"

index="index" maxIndexEntries="1000" contactName="John Smith"
contactWebsite="www.domain.com">

matchIT SQL Information Pack Page 102 of 133

8.1 GenerateCorrectedAddresses Summary Report

The GenerateCorrectedAddresses Summary report is produced at the end of the

GenerateCorrectedAddresses process and will look similar to the following screenshot.

The report provides general figures reflecting the number of records falling into each

verification level. These figures are also displayed in the form of a bar graph and a pie chart,
to make general inspection easier to read and any problematic results easier to notice.

matchIT SQL Information Pack Page 103 of 133

8.2 FindMatches Summary Report

The FindMatches Summary report is produced at the end of the FindMatches process and will

look similar to the following screenshot.

matchIT SQL Information Pack Page 104 of 133

The FindMatches process produces the following information:

Reporting Category Description

Total Records ‘Total records’ refers to both the total number of records in the table, for each key,
and the sum of these.

Records Read ‘Records read’ refers to the number of records that are considered for further
comparison by the matchIT API. If pre-clustering is enabled (the default) then this
figure will usually be substantially lower than total number of records in the table.

Comparisons ‘Comparisons’ refers to the number of record pairs that are compared by the
matchIT API.

Duplicates ‘Duplicates’ refers to both the number of duplicates found by a particular key and
to the sum of these.

Matches ‘Matches’ refers to a final number of unique duplicates (for example, one particular
match might be found using two different keys, causing a duplicate count of 2 but
a correct match count of just 1).

Large clusters ‘Large clusters’ refers to groups (clusters) of potential matches that are too big to
be processed (i.e. the number of records exceeds the maximum cluster size).

Errors ‘Errors’ refers to processing errors within the matchIT API; details of such records
are logged (wherever possible, please forward these records to helpIT systems).

8.3 FindOverlap Summary Report

See FindMatches.

matchIT SQL Information Pack Page 105 of 133

8.4 GroupMatches Summary Report

This report is produced at the end of the GroupMatches process and will look similar to the

following screenshot.

Notes:

� Proportion of Duplicates – indicates the percentage of records that matchIT SQL has
identified as being duplicated records.

� Matches by Score Range - indicates the number of matches in each scoring range,
based on the minimum and maximum matching scores.

8.5 GroupOverlap Summary Report

See GroupMatches.

matchIT SQL Information Pack Page 106 of 133

8.6 FindExactMatches Summary Report

See FindMatches. Note, however, that records are not compared using the matchIT API,

two records are deemed exact matches simply if their composite key values are identical.

Notes:

- ‘Records skipped’ refers to records that have a blank composite key value; blank key

components are indeed permitted, but they can’t all be blank. (For example, if the
composite key is ‘mkNameKey+mkAddressKey+mkPostOut+mkPostIn’, then a record will

be skipped if all of these keys are blank; two records will be considered an exact match if

any key is not blank and their composite key values are identical.)

8.7 FindExactOverlap Summary Report

See FindExactMatches.

8.8 GroupExactMatches Summary Report

See GroupMatches.

Note, however, that there is no ‘scores’ section (exact matches are not given a score, they

either exactly match or they don’t).

8.9 GroupExactOverlap Summary Report

See GroupExactMatches.

matchIT SQL Information Pack Page 107 of 133

9 Address Correction

9.1 Installation

For matchIT SQL to be able to generate corrected addresses using the

msp_GenerateCorrectAddresses stored procedure, a valid activation code must have been

issue by helpIT systems. Use this activation code when installing matchIT SQL.

If matchIT SQL was previously installed without addressing support, then matchIT SQL will

need to be reinstalled. Run Reactivate (Start Menu->Programs->matchIT SQL->Utilities)
to apply the new activation code provided by helpIT, then re-run the matchIT SQL installer.

During installation, an Address Correction page will be shown. Ensure the option “Install
addressing components” is checked to add addressing support. For UK addressing, there

will be an additional option, Download data files that, if checked, will allow automatic

download of the addressing data. For US and International addressing, helpIT will provide
installation media that will install the data separately.

9.2 Setup

Additional configuration steps must be performed before the addressing stored procedure

can be used (the following steps show how to configure addressing with the example

database, matchIT_SQL_demo).

Firstly, the built-in Local Service account must be given write access to the database. This

is because the address correction actually occurs outside the stored procedure; it is run
under the context of the matchIT SQL Service which, by default, uses the Local Service

account (a low privilege Windows service account).

Lastly, the account must be given the following roles for the matchIT_SQL_demo database:
db_datareader, db_datawriter, and db_ddladmin. Alternatively, the account can be given

the db_owner role instead of these three roles.

Note that the matchIT SQL Service can be changed to run under any user account,

including domain accounts. In this case, that user account will instead require both the
bulkadmin role and write access to the database.

Please refer to the matchIT SQL Installation and Deployment Guide for further information.

9.3 Usage

The stored procedure requires an appropriate Addressing section in an XML configuration

file, which indicates the input columns to be used for address correction, plus the output
table and columns that will be populated. To configure this, either modify a copy of the

installed template configuration, or set up a new configuration via the matchIT SQL web-

based UI; alternatively, configure a GenerateCorrectedAddresses task in an SSIS package.

Refer to msp_GenerateCorrectedAddresses for further details.

matchIT SQL Information Pack Page 108 of 133

10 Mail Sortation

10.1 Installation

During installation of matchIT SQL, ensure that you have the Mail sortation components box
checked. By checking this, the MailSortation SSIS task will be installed.

10.2 Usage

Mail Sortation is performed by separate software called Sort and Save, by BBS Ltd. This
software is installed and configured via the matchIT SQL MailSortation SSIS task. When the

task runs as part of your SSIS package, your SQL data is extracted and passed to Sort and
Save, for sortation. Sort and Save will generate various Mail Sortation data fields as well as

the reports that are required by the Mail Sortation carriers.

Upon opening the MailSortation task, you will see the following options. These must be

configured before the task can be run as part of your SSIS package:

matchIT SQL Information Pack Page 109 of 133

� Source: There must be a preceding task within your SSIS package, where the SQL source

data table(s) are specified and the address and postcode fields are mapped. This can
either be a GenerateKeys task or a GenerateCorrectedAddresses task. This Source

dropdown menu is used to specify the preceding task.

� Job Name: Job files (text files with a .job extension) are used to store Mail Sortation

configuration settings, E.g. item weight, mail format, delivery speed, etc. You can use the

Job Name option either to select an existing job file or to create a new one.

To create a new job file, simply type the name of the file into the Job Name text box (no

file path required) and click on the Configure Job button. If you have not yet specified the
location of your Sort and Save installation, you will be prompted to do so before your job

file can be created.

� Configure Job: This will open the current job file in Sort and Save’s Job Configuration
mode. Here you can configure all options specific to the job, E.g. item weight, mail format,

delivery speed, etc. You can also specify the carrier, E.g. Royal Mail or a Downstream
Access carrier, as well as reporting and Mailmark options. See Advanced Automation for

information on updating job files manually.

� Mailmark Controller: This will launch the Sort and Save Mailmark Controller. The

Mailmark Controller gives you full control over any Mailmark jobs that have been run.

These jobs can be uploaded, split, rescheduled or cancelled, as required.

� Install Sort and Save: This will launch the Sort and Save Installer, which will download

and install the latest version of the Sort and Save software onto your PC.

� Sort and Save Installation: Here, you can map your installation of Sort and Save. This

option is automatically populated when you use the Install Sort and Save button to

perform the install. If you already have Sort and Save installed, you can click on the
selection button to map this installation.

matchIT SQL Information Pack Page 110 of 133

� Preferred Reports Directory: This option lets you choose where the generated Mail
Sortation reports are copied to after each Mail Sortation job is run.

� Output Table Extension: When a Mail Sortation job is run, the sortation data, E.g.
selection codes, barcodes, Mailmark barcodes, bag breaks, etc, are copied into a new SQL

table known as the Mail Sortation output table. The output table is created in the same
SQL database as the source table (the table mapped in the preceding GenerateKeys or

GenerateCorrectedAddresses task), with the same name as the source table, but with an

additional table name extension. This option lets you modify that extension, which by
default is “_MAIL_SORTATION”.

� System Options: This launches the Sort and Save System Options. Here, you can
configure advanced settings for the available carriers as well as your Mailmark login details

(required in order to perform a Mailmark sortation).

� Run Sort and Save Silently: Check this if you do not wish for Sort and Save to be
displayed on screen when it is sorting your data.

10.3 Advanced Automation

In some scenarios, particularly where lots of jobs with different requirements are being run in

succession, you may find it beneficial to implement a system that dynamically configures a
job file that is permanently specified in the SSIS task, before running your SSIS package. This

would prevent you having to manually configure the job file between sortations, making the

whole Mail Sortation process far more time efficient. For detailed information on the layout of
job files, please refer to the Sort and Save documentation, located in the SYSTEM folder of

your Sort and Save installation.

In addition to dynamically configuring the job file, you could potentially load the source data

into a generic SQL table that is permanently mapped in the GenerateKeys or

GenerateCorrectedAddresses task that precedes your Mail Sortation task. This would further
reduce the need for manual configuration between jobs.

matchIT SQL Information Pack Page 111 of 133

11 Suppression Processing

11.1 Installation

During installation of matchIT SQL, ensure that you have the suppression components box
checked:

11.2 Utilising the SSIS package.

If you are enabled for suppression processing, matchIT SQL comes installed with a pre-

configured suppression processing SSIS package. By default, you will find this here:

C:\matchIT SQL\SSIS\suppression

We recommend using the package as is, since you may break the reporting side if you try to

customise it too much. If you must make changes though, please make a copy of the package
and work using that, since otherwise future software updates will overwrite the initial package

etc. We recommend copying the entire C:\matchIT SQL\SSIS\suppression folder when copying
the package to avoid issues relating to task IDs. Note that the package was implemented in

such a way that it’s compatible from Visual Studio 2005 and later.

Within the package, you will see that the first task is called ‘Suppression Configuration’ – which
is a special task that allows you to pre-configure your suppression process to use specific

suppression datasets – either by selecting what you want from the checkbox options, or by
loading from a configuration file. The latter option is there for those that want to call the

process in an automated way, e.g. through the SQL Server Job Agent.

Opening up the Suppression Configuration task will display the following options:

matchIT SQL Information Pack Page 112 of 133

� Every job that you run, should be given a job name to identify its processing results.

� Company name – enter your own company name or the name of the client that you are
running a job for.

� Suppression data sets – select which of the standard suppression files you want to match
your data against. Note that if you want to perform an Equifax Goneaway

suppression, then you will need to map both disConnect Goneaway and

reConnect since for performance reasons we have split the Equifax records with
COA references into a separate table; only use Append New Addresses if you

actually want the data to be submitted to Equifax for reconnect processing.

� Append new addresses where available – will automatically output a table called

MISQL_newaddress_output containing new address lines for suppression datasets that

have new addresses (e.g. Smartlink). Equifax new addresslines are output to a special
table called DisConnectCOA__newaddress_output due to needing to be sent to Equifax for

additional processing.

� Matching Level – selects whether to match at individual or family (surname only) against

the suppression datasets

� Type of hits to charge for – select Permanent if you or your client will be updating a

database based on the results (i.e. keeping a permanent record of the output), or

temporary if this is for a single mailing and no database will be updated. Note that hits
against new address databases where you have opted to output the new addresses will

always be charged based on the permanent costs.

� Recalculate only – only run the result hit tables are re-generated; the matching is not

repeated – see 11.2.6.

matchIT SQL Information Pack Page 113 of 133

11.2.1 Suppression Priorities

Within your matchIT_SQL_suppression database, you will see that there is a table called
MISQL_SuppressionPriorities which contains a list of priorities and costs for each suppression

dataset. These are used to provide a summary of the cost you will incur when you utilise the

suppression datasets. Note that prices change, so this table will only be an indication and
should not be relied on for accurate pricing unless you are certain that the costs are accurate.

Field Description

suppressiontype maps directly to the container names for the suppression
datasets in the SSIS package

Priority 1 = highest priority

TempCost Cost of each temporary hit

PermCost Cost of each permanent hit

ResultTableName Maps to the output from the GroupOverlap task in the

suppression container within the SSIS package

HasNewAddresses indicates if the suppression dataset has new addresses for

movers

SuppressionTableName Name of the table containing the suppression data

NewAddressTableOutput special for Equifax coaref output

isEquifax special for Equifax datasets that need new address data to be

uploaded to Equifax.

helpITLog ‘1’ indicates that hits against this suppression dataset will be

output in the log file for upload to helpIT systems support.

If you need to extend the SSIS package to handle additional suppression datasets, then you
will need to adding additional records in this table corresponding to the new datasets – if you

don’t then the reporting process within the package will break.

11.2.2 Using the options config.

The default config file is C:\matchIT SQL\SSIS\suppression\config.xml and contains the
following XML which is self explanatory:

<?xml version="1.0" encoding="utf-8" standalone="yes"?>

<GeneralSettings>

 <JobName></JobName><!-- Enter the name of the suppression job -->

 <CompanyName></CompanyName><!-- Enter the name of your company -->

 <Rerun>false</Rerun><!-- Set to true if this job is a rerun, otherwise set to false -->

 <RecalcOnly>false</RecalcOnly><!-- Set to true if you wish to recalculate the costs with
different options (e.g. different hit type or with fewer suppression files in use), without re-

running the entire suppression step, otherwise set to false -->

 <SuppressionFiles></SuppressionFiles><!-- List the suppression data sets required for
this job, separated with commas e.g. GAS, TBR, disconnect Complaints etc-->

 <IncludeNewAddresses>false</IncludeNewAddresses><!-- Set to true to include new
addresses when suppressing against goneaway datasets that offer new addresses,

otherwise set to false -->

 <MatchingLevel>Individual</MatchingLevel><!-- Set to either Individual or Family -->

 <PermOrTemp>Perm</PermOrTemp><!-- Set to Perm if suppressions are to be

permanently removed, otherwise set to Temp -->

matchIT SQL Information Pack Page 114 of 133

</GeneralSettings>

Note that the items listed in the SuppressionFiles section of the XML should map to the

container names in the SSIS package for each suppression file. There is a property set for the
GenerateKeys task in each Suppression File container called IsSuppressionTask that indicates

to the Suppression Configuration task to list it as an option.

This means you can add your own containers – as long as you also ensure that your customer

suppression datasets are also listed in the MISQL_SuppressionPriorities table in the

suppression database.

Note that if you leave any settings blank, then you will get an error when trying to load the

configuration file.

11.2.3 Suppression Loader

From the Suppression Configuration task, you can launch the Suppression File Loader by

clicking on the Load button:

This screen allows you to easily load any of the suppression files that you are receiving
from helpIT systems. You can also extend this to work with suppression files that you

source directly by adding to C:\Program Files\matchIT SQL\bin\SuppressionLoad.xml

To use the loader:

1. Simply specify the database connection details.

2. Point the dataset file setting at the source data that you need to load.

matchIT SQL Information Pack Page 115 of 133

3. Load the available suppression datasets by clicking load on the selected
configuration file.

4. Choose the database to load the files into. Note that if you change this, then you will
need to update the other Connection Managers within the SSIS package.

5. Select the dataset that you wish to load the source data into.

The Loader will automatically load the datafile into your SQL Server Database and generate

the required matchIT SQL match keys at the same time.

If you are not using one or more of the suppression containers within the package (because

you do not source that data), then we strongly recommend disabling those containers in the
package.

11.2.4 Select the data to be suppressed

Within the suppression package is a task labelled ‘Source Data’ – this is where you map

your input table that you wish to match against the suppression datasets that you have

loaded.

If you are creating an automated process, then we recommend creating a generic table

structure and map this here. Then import records into this table prior to calling the
suppression package with the appropriate configuration settings for the job that you wish

to execute.

11.2.5 Suppression Output

The suppression package produces 3 output tables at the end of processing:

1. MISQL_MergedHits – this is a work table produced during the suppression matching

process containing every hit; this is then used to populate MISQL_PrioritisedHits.

2. MISQL_PrioritisedHits – this lists any of the reference IDs from your source data that

have matched against a suppression file. Where a record matched multiple
suppression file, only the highest priority (i.e. lowest priority value) is recorded here.

Additionally the suppression reference, type and hit cost are recorded.

3. MISQL_SuppressionLog_Month– this table contains summary level information for
each job processed in the last month. At the start of a new month, a new table is

generated. The original tables are overwritten after 12 months. For example, the log
table for August will be called MISQL_SuppressionLog_Aug.

Additionally a log file is produced for any hits that need to be communicated back to helpIT
systems support. By default the file is output to the following directory:

c:\matchIT SQL\suppressions

if you install matchIT SQL to a non default directory, then you will need to amend the SSIS
package variable to contain the new path of where this log file should get written.

11.2.6 Re-generating Output without Re-running suppressions

If you have run data through against all of your installed suppression data, but then wish
to produce the results against a subset (but without re-running all of the processing), then

this can be achieved as follows:

Within the Suppression Configuration task – or its config file, choose a subset of the
suppression files you used previously. Set the Recalculate Only setting on. Now when the

package processes, as long as you did originally generate results for the suppression
datasets you now have selected, then the results will be re-generated without repeating

the processing.

matchIT SQL Information Pack Page 116 of 133

11.2.7 Cancelling a job from the log

If you run a suppression job, but decide to not proceed with it, then you will need to cancel
the job from the log, or you could be charged for the hits. To cancel the job, simply set

the following variables in the CancelJob SSIS package and run the package.

� JobName – Unique name of the job that you need to cancel.

� LogTable – log table containing the job results e.g. MISQL_SuppressionLog_Oct

11.2.8 Hardware Recommendations

If you are working with numerous suppression datasets, then it’s strongly recommended

that you have suitable hardware to get the most out of the suppression package.

For reference, running through 80,000 records against 11 suppression datasets (including 3

large goneaway datasets making around 300,000 million suppression records in total) takes

around 13 minutes on a 20 core machine, 64Gb RAM and a dedicated REVO drive.

You may find that running too many suppression files at once on lesser spec machines will

slow processing.

matchIT SQL Information Pack Page 117 of 133

12 SSIS Tasks

12.1 Installation

The SSIS Tasks are installed with matchIT SQL by default. During installation matchIT SQL

detects which version(s) of SQL server you have installed, and, providing SQL Server

Integration Services are installed, registers the appropriate assemblies to the Global Assembly
Cache, as well as copying them to the DTS folder of the installation. Note that all of the

following SSIS tasks use the same file (Template.xml located in the SSIS sub folder within the
matchIT SQL install folder) as their base for creating XML configuration files for their

processes. This template contains the paths to the matching matrices and master priorities
files that are used in the processes, which can be manually amended if needed to point to

different files. As well as the Tasks, a demo SSIS package is installed to the demo folder in

matchIT SQL, under an SSIS sub folder. There are versions for SQL 2005, SQL 2008 and SQL
2012, all of which are configured to work with the demo database provided with matchIT

SQL. Once the demo database is installed and the setup step below for the tasks has been
completed, the packages should be able to run out of the box – The only things that may

need amending are references to connection strings, which can be done quite easily in BIDS.

If the connection strings do need to be amended, you may also need to check that the
mappings in the Generate Keys components are persisted.

12.2 Setup

Before the tasks can be used in BIDS or Visual Studio, they need to be added to the toolbox

in the control flow pane (Note this is not applicable to BIDS / VS 2010). You can do this by

right-clicking on the toolbox and selecting ‘Choose Items…’. The ‘Choose Toolbox Items’
dialog will appear after a while, in which you need to select the ‘SSIS Control Flow Items’ tab.

In this tab you should see the matchIT SQL tasks currently unselected (they are identifiable
by the fact that they are named using the prefix ‘MISQL.’). Simply select the tasks by

checking the check box next to each one, and click ‘OK’.

12.3 Usage

Below is a brief description of each task and what it does. For a visual representation of

some typical SSIS processes and some of the tasks themselves, please see Appendix A.

MISQL.GenerateCorrectedAddresses – This task should be the first task in a sequence if
it is to be used at all. Its function is to generate corrected addresses from a given source

and output them in a specified output format. This task basically wraps the same core

functionality as the procedure msp_GenerateCorrectedAddresses. The specified output table
in this task is persisted in a variable at the SSIS package level at design time so that it can be

picked up and used in the next task.

MISQL.GenerateNCOAAddresses – This task will usually follow the
GenerateCorrectedAddresses task, but can also be run standalone or even following the

GenerateKeys task to allow for maximum flexibility. Its purpose is to identify individuals,

families, and companies that have changed their address (i.e. moved), to help keep a
database up to date. Please see section 7.1.2 for further information on the

msp_GenerateNCOAAddresses stored procedure, which provides the same functionality as
this task. Note that this service is currently only available for US addresses, to licensed users

only.

matchIT SQL Information Pack Page 118 of 133

MISQL.GenerateKeys – This task should be the first task in a sequence unless any of the
previous tasks are also being used. This task generates the match keys required to be used

in the matching tasks from the specified source data. Mappings are made from source
columns to their relevant matchIT API field. This task encapsulates the same core

functionality as msp_CreateKeysTable and msp_BulkGenerateKeys. By setting up a
GenerateKeys task, you are effectively setting up a ‘Data Source’ with an ID, which is used as

a reference in following matching and grouping tasks.

MISQL.FindMatches – This task should follow on from a GenerateKeys task. It is used to

set up and execute fuzzy matching based on specified match keys and minimum score
thresholds, and is pointed at a data source set up by a GenerateKeys task. The core

functionality used by this task is the same as the procedure msp_FindMatches.

MISQL.GroupMatches – This task should follow on from a FindMatches task. It is used to

group the results produced by a FindMatches task. Different types of tables can be selected
to be output and the names of the tables can be specified. The core functionality of this task

encapsulates the procedures msp_GroupMatches, msp_OutputMatchingPairs,
msp_OutputMatchingGroups, msp_OutputDuplicates and msp_OutputDedupedTable.

MISQL.FindExactMatches – This task should again follow on from a GenerateKeys task. It
basically the same as the FindMatches task, only instead of fuzzy matching, exact matching is

applied using the keys specified. The core functionality used is the same as
msp_FindExactMatches.

MISQL.GroupExactMatches – This task should follow on from a FindExactMatches task. It
is used to group the results produced by a FindExactMatches task. The core functionality is

the same as the procedure msp_GroupExactMatches.

MISQL.FindOverlap – This task should follow on from two GenerateKeys tasks. It is used
to set up and execute fuzzy overlapping between the two data sources set up in the

preceding GenerateKeys tasks. The match keys and score thresholds to be used can be

configured. The core functionality used by this task is the same as the procedure
msp_FindOverlap.

MISQL.GroupOverlap – This task should follow on from a FindOverlap task. It is used to

group the results produced by a FindOverlap task. Different types of tables can be selected

to be output and the names of the tables can be specified. The core functionality of this task
encapsulates the procedures msp_GroupOverlap, msp_OutputOverlapMatchingPairs,

msp_OutputOverlapMatchingGroups, msp_OutputOverlapDuplicates and
msp_OutputOverlapDedupedTable.

MISQL.FindExactOverlap – This task is basically the same as the FindOverlap task, only
instead of fuzzy matching, exact matching is applied using the keys specified. The core

functionality used is the same as msp_FindExactOverlap.

MISQL.GroupExactOverlap – This task should follow on from a FindExactOverlap task. It
is used to group the results produced by a FindExactOverlap task. The core functionality is

the same as the procedure msp_GroupExactOverlap.

matchIT SQL Information Pack Page 119 of 133

13 Troubleshooting
This section describes common error messages that you may encounter while getting your
SQL scripts and matchIT SQL Stored Procedures working.

13.1 A .NET Framework error occurred during execution of user-defined
routine or aggregate "msp_GenerateKeys":

Msg 6522, Level 16, State 1, Procedure msp_GenerateKeys, Line 0

A .NET Framework error occurred during execution of user-defined routine or aggregate

"msp_GenerateKeys":

System.Data.DBConcurrencyException: Concurrency violation: the UpdateCommand affected

0 of the expected 1 records.

13.1.1 Possible Cause:

The keys table exists and is not empty, and msp_GenerateKeys previously failed.

Subsequently running msp_GenerateKeys means that, because the table isn’t empty, SQL

Update commands are used to write data to the key fields rather than an Insert command
(if the table was empty). But the exception is thrown when trying to update a row that

doesn’t exist.

To get around this, delete the keys table then re-run the key generation. Also, please

consider using msp_BulkGenerateKeys, as that stored procedure is much less likely to leave

the table in an incomplete state.

13.2 A .NET Framework error occurred during execution of user-defined
routine or aggregate msp_GenerateCorrectedAddresses

Msg 6522, Level 16, State 1, Procedure msp_GenerateCorrectedAddresses, Line 0

A .NET Framework error occurred during execution of user-defined routine or aggregate

"msp_GenerateCorrectedAddresses":

System.Exception: Failure in Addressing module; exit code was 1. Please check the matchIT

SQL temp directory for an error log file.

13.2.1 Possible Cause:

An error occurred during execution of the external Addressing Process.

Any errors that occur in this process are written to the progress log file that you defined in

the xml configuration through the UI. Look in the progress log file for a description of
what went wrong.

Note that the referenced error log file might contain this error:

� Login failed for user ‘NT AUTHORITY\LOCAL SERVICE’

If this is the case, it’ll be necessary to give the Local Service account read-write access to

the database being processed via this stored procedure. (This is because the Addressing
runs under the context of the matchIT SQL Service – outside SQL Server – and requires

direct access to the database. By default, the Service runs using the Local Service

account.) Additionally, the account will need to be given the ‘bulk admin’ server role.

Please refer to the Address Correction section for further information.

matchIT SQL Information Pack Page 120 of 133

13.3 Column ‘<column>’ has invalid type: <type>

Msg 6522, Level 16, State 1, Procedure msp_OutputDuplicates, Line 0

A .NET Framework error occurred during execution of user-defined routine or aggregate

"msp_OutputDuplicates":

core.DataException: Column '<column>' has invalid type: <type>

13.3.1 Cause:

matchIT SQL currently provides support for the following column data types: bit, tinyint,

smallint, int, bigint, char, varchar, nchar, nvarchar, datetime, xml, uniqueidentifier, float,
real, decimal, numeric.

Other data types (such as money, text, and date) can still be mapped in XML configuration

files, but they will cause this exception in stored procedures such as msp_OutputDuplicates
and msp_OutputDedupedTable. Please contact helpIT systems if you encounter such an

exception.

matchIT SQL Information Pack Page 121 of 133

Appendix A – SSIS Screenshots

The SSIS tasks have been designed to be intuitive and simple to use, however we have

included screenshots below of some typical processes on would run with the tasks, as well as

some screenshots of the GenerateCorrectedAddresses and GenerateKeys tasks.

Figure 1 – Matching Process

matchIT SQL Information Pack Page 122 of 133

Figure 2 – Overlap Process

matchIT SQL Information Pack Page 123 of 133

Generate Corrected Addresses Task

Source Tables

This tab is used to specify the source data tables. It is possible to add and join across multiple tables,

as well as setting conditions for the joins / select statement.

matchIT SQL Information Pack Page 124 of 133

Input Mappings

This tab is used to map specific fields in your source data to their corresponding address

types for the input.

matchIT SQL Information Pack Page 125 of 133

 Output Mappings

This tab is used for defining the structure and content of the corrected output table. Here,

you map the corrected values to the relevant columns, as well as specifying the default

values from the input address that should be populated in the output columns, should an
address fail to be corrected.

matchIT SQL Information Pack Page 126 of 133

API Settings

This tab is used to set the API-specific settings for the process.

matchIT SQL Information Pack Page 127 of 133

Generate Keys Task

Source Tables

This tab is used to set up the connection to the data source and define any source tables

that contain the data to be de-duped. It is possible to add and join across multiple tables,
as well as setting conditions for the joins / select statement.

matchIT SQL Information Pack Page 128 of 133

Input Mappings

This tab is used to set mappings between the source data and matchIT Record fields

matchIT SQL Information Pack Page 129 of 133

Output Settings

This tab is used to set the output settings for the data source, such as the table name and

whether to overwrite the keys if they have already exist.

matchIT SQL Information Pack Page 130 of 133

Filtering and Sampling Settings

This tab is used to set the output settings for the data source, such as the table name and

whether to overwrite the keys if they have already exist.

matchIT SQL Information Pack Page 131 of 133

Advanced Settings

This tab is used to set API settings for the Record / Key generation process.

matchIT SQL Information Pack Page 132 of 133

Appendix B - Key Generation Flag field

This field is generated during key generation in the table you have defined as the keys table.

The following values may be produced dependent upon your data:

13.3.1.1 Data Flags Usage

Position DataFlags
Usage

Values

1 Exclusion Status X if exclusion words are found,

blank otherwise

2 Company

Extracted

C if company name has been extracted

3 Company

Acronym

This is set to 1,2 or 3 if any part of the company

name is an acronym

4 Job Title/

Department

J if job title extracted,

D if department extracted

5 Verified
Postcode

V if postcode was verified OK

6 Extracted
Postcode

E if postcode was extracted OK

7 Not used by the
matchIT API

8 Generated Prefix
status

P - generated prefix,

Q - changed prefix,

S - used supplied prefix

blank - no personal name processing

9 Salutation status S - default salutation generated

G - non-default (success!) salutation generated

blank - no salutation field

10 Original Initial Set to the first letter of the input forename field

11 Original Initial

#2

First letter of second input forename, if any

matchIT SQL Information Pack Page 133 of 133

12 Second Name

Sex

Set to sex of second name if supplied & possible

to calculate

13 Foreign status F if record is foreign

14 Not used by the

matchIT API

15 Not used by the

matchIT API

16 Premise status X if premise extracted,

C if premise copied

17 Zip status X if zip extracted,

C if zip copied

18 Town status X if town extracted,

C if town copied

19 County status X if county extracted,

C if county copied

20 Country status X if country extracted,

C if country copied.

