
matchIT API Guide

iii

Table of Contents

Introduction .. 1

Overview .. 1

Match Keys... 2

Match Scores .. 3

System Design.. 4

Record Generation.. 4

Record Comparison .. 4

Batch matching within a single file .. 5

Comparing across files ... 6

Online data capture... 6

Online inquiry... 7

Classes, Properties, and Methods ... 9

Engine class.. 10

Engine Properties.. 10

Engine Methods.. 10

EngineSettings class ... 12

EngineSettings Properties... 12

EngineSettings Methods ... 26

MatchingSettings class ... 27

MatchingSettings Properties and Methods ... 27

NameMatchingMatrix class.. 31

NameMatchingMatrix Properties ... 31

NameMatchingMatrix Methods ... 32

OrganizationMatchingMatrix class .. 33

OrganizationMatchingMatrix Properties .. 34

OrganizationMatchingMatrix Methods .. 35

NamesAndWords class... 36

NamesAndWords Methods... 36

InputFields class ... 37

InputFields Properties... 38

Record class.. 46

Record Properties ... 47

Record Methods.. 55

CompareResult class .. 56

Table Of Contents

iv

CompareResult Properties .. 56

MultiLevelMatchingResults class .. 58

MultiLevelMatchingResults Properties .. 58

MultiLevelMatchingResults Usage .. 59

Scores class... 60

Names and Words Table... 61

Surnames Table .. 63

Towns Table ... 63

Coding Example (Visual Basic) ... 64

Comparing two records .. 64

Sample Record.. 66

Sample of matchIT API Generate processing... 66

Appendix A: Enumerations .. 69

Enumeration A: Country .. 69

Enumeration B: Extraction ... 69

Enumeration C: FieldType ... 70

Enumeration D: Gender.. 70

Enumeration E: MatchingMatrixIndex... 71

Enumeration F: PhoneticAlgorithm.. 71

Contact Details ... 72

Introduction

matchIT API Guide Page 1

Introduction

The matchIT API is a component written by helpIT systems for state of the art fuzzy

matching, data formatting and data cleansing – amongst its most common uses are

duplicate prevention, inquiry, deduplication and merge/purge. The matchIT API splits

and cases names and addresses, generates match keys, and grades matching records. The

component provides a compact and efficient solution to the problems of data quality and

duplication on any Windows based system. The matchIT API is also available in

common variants of Unix and Linux, using shared libraries.

This is the help file for the COM version of the matchIT API. This document assumes

that you have familiarity with at least one Windows-based programming language.

Experience with the utilization of COM components from within programs would be an

advantage, but not essential. If you have any questions, please contact us and we will be

glad to help you.

Overview

There are two fundamental parts to the matchIT API:

• record generation

• record comparison.

These can be utilized in five different scenarios:

• data entry not connected to the target database e.g. in web forms

• on-line lookup e.g. customer inquiry

• data capture incorporating duplicate prevention

• single file matching e.g. deduplication

• cross file matching e.g. data load.

Looking at these scenarios, it is obvious that the first scenario, data entry not connected

to the target database, does not require record comparison. Therefore, for formatting,

standardization and screening of new data independent of data that you already hold, you

only need to incorporate the record generation aspect in your application. This will allow

you to e.g. parse names into their component parts, relocate floating data to fixed fields,

standardize abbreviations and expansions and allow you to screen for garbage and

abusive entries.

The remaining scenarios require both record generation and record comparison to be

effective. Record generation allows you to group records intelligently for comparison, by

generating phonetic and non-phonetic match keys for each record. Record comparison

grades each pair of matching records with a match score, which allows you to fine tune

the matching and give the user control of the level of matching that they use.

Because understanding the use of match keys and match scores is fundamental to

effective use of the matchIT API for the last four scenarios listed above, we will next

describe how and why they are used.

Overview

matchIT API Guide Page 2

Match Keys

The matchIT API allows you to generate phonetic “match keys” from names and

addresses, as well as non-phonetic standardized data. In this context, a match key is

something that groups of records within the database have in common, which indicates

that detailed comparison of the records is worthwhile to see how well the records match

each other in other respects.

In an ideal world, a user would be able to compare every single record in a database with

every inquiry, or with data entered on a data capture screen, or with every other existing

record in the database. For internal matching on a 10,000 record database, this would

mean you would do roughly 10,000*5,000 i.e. 50 million comparisons - even on this

fairly small database, the processing time would be far too long. For inquiries or data

entry, looking at every record on the existing database would take far too long for a real

time application.

To reduce the number of comparisons, we can look at a field and say that only records

that have the same value in that field are potential matches. For example, we could select

the Lastname field (if the last name is held separately from the title and first names or

initials), and only compare records where people have the same last name. This would

dramatically reduce the number of comparisons we would have to do because, for

example, we would not compare a record for Mr Smith to a record for Mr Jones. We

would compare all the Smiths, because two records for Mr Smith might be for the same

person. In this approach, we have used the Lastname field as a match key.

This approach is an improvement on our original idea, but it has its limitations. For

example, take the name Deighton – people may expect it to be spelt Dayton, as this

spelling is far more common than Deighton. The two spellings sound the same, but our

solution above would not compare Mr Dayton and Mr Deighton, because the Lastname

field is different. The obvious solution to this is to use a "sounds like" version of the

Lastname field as a phonetic match key. The matchIT API takes important fields (such as

name, address, company), and generates phonetic versions of the key elements in those

fields.

However, even this approach still gives us too many records to compare, most of the

time. For example, if you are comparing records across the whole of the US, there are a

lot of Smiths – in a file of 100,000 records there would on average be nearly 750 Smiths,

which would involve over a quarter of a million comparisons if processing internal

matching of the database, or 750 real time comparisons for inquiry or data entry. To get

round this, we use combinations of fields to narrow the search – Mr Smith in Boston is

obviously not the same person as Mr Smith in Dallas. In the example above, we may

choose something like phonetic key of last name plus part or all of the postal code – so

now we only compare two records for Smith if they live in the same area. This is a more

explicit match key than just phonetic last name.

The last point to consider is that when looking for matches is that you can never rely on

any single item of data always being the same in order to find all the matching records

there are - you need to do at least two scans of the database using different match keys.

If, for example, two records were identical except that one record did not have a postal

code, you would miss the match if you relied just on phonetic key of last name plus the

postal code - because the records would not be compared unless the postal code as well

as the phonetic last name were the same. However, if the street in both the records is the

same (which is quite likely, if they are really matching records), then a second match key

of phonetic last name plus the phonetic key of the most significant word(s) in the street

will find the match on the second scan of the database. For data entry, this may mean

that a potential duplicate of a new record would not be detected until the address has

Overview

matchIT API Guide Page 3

been entered, if the postal code held on the record on the database is different from that

being entered – but most duplicates would be detected before entering the address.

For most data files, we recommend three match keys - for US data, our third default key

is a phonetic key of city and street together with the street or apartment number. For UK

data, it is the postal code on its own. These keys usually give reasonably small groups of

records to compare and allow non-phonetic last name matches to be detected. For

example, you could pick up a match of Wilson and Wislon, as long as the postal code in

the two records is identical and the address is effectively the same.

Match Scores

Having established that two records have the same match key, or that a record being

entered or sought has the same match key as an existing record on the database, you can

use the matchIT API to go through the data, field by field, and work out how similar they

are. Each field can contribute to a match score, depending on how similar those fields are

between the two records, or between the new data and the existing record. At the end, we

have an overall score that tells us how alike two records are – by default, the higher the

score, the more similar the records are.

For batch processing, when flagging duplicates or merging files in a batch process, you

can ask the user to enter a threshold score, above which your system will automatically

flag one record from all matching pairs. With most data files, all pairs scoring above a

particular score will be genuine duplicates ("true matches") and anything below a lower

score will be "false matches" – this leaves a "gray area" between these two scores where

most of the pairs are true matches but some are false. For a cautious approach

(“underkill”), you can therefore enter a higher score as a threshold score for deletion. For

overkill, you can enter a lower score. Alternatively, you can go for underkill and then

visually inspect the matching pairs in the gray area - there are usually relatively few in

this area.

This process works well, but it is essential that system designers can tune it themselves.

This is because matching requirements can vary from company to company, file to file

and even job to job. For example, sometimes you want to match at individual level,

sometimes at company or family or address. In addition, data files vary widely in their

structure and overall "shape" of the data" – sometimes postal codes are reliable and low

level, sometimes they are unreliable, or they only indicate the town/city and not the

street.

Because we know that everyone's data is different, we have allowed the way that two

records are compared to be customized, using a parameter table that tells us how much

each field contributes to the overall matching score. Using this table, we can tell the

matchIT API how important each field is in the matching process. We call this the

Weights table, as it reflects the relative weighting that each field has towards the total

match score. For name and address matching, the matchIT API compares the elements of

the name (or address) as a whole, rather than just comparing them element by element -

this allows it to match names where some of the components are omitted or in a different

order in one record (e.g. John Michael Smith and Mike Smith) or addresses which have a

house or building name in one record but not in another.

For more information about matching weights and a list of the default weights, please

refer to the matchIT API FAQ’s.

System Design

matchIT API Guide Page 4

System Design

The first point to consider when designing a database that uses the matchIT API for data

cleansing and/or matching, is if and where you want to store match key fields on your

system, and (if so) which ones. Note that you can also use key fields of your own as

match keys e.g. date of birth, account number. Whether you are generating match keys or

not, the matchIT API will clean and tidy up data you supply to it – you may need to

provide additional fields for e.g. salutation, company name, etc. if you want to take

advantage of the name parsing and reformatting functions available in the API.

Record Generation

The matchIT API should usually be run and the results stored for every record in your

database before you can perform on-line duplicate prevention and/or inquiry. If you have

existing data, then this record generation process should be performed in a batch run -

you will need to write a batch processing routine that calls the matchIT API to perform

the task. Notes on which fields should be included and which may need to be supplied

can be found in the Record Class section of this document. The name keys returned by

the matchIT API are loose forms of the generated phonetic keys. However, there are

some circumstances e.g. well structured consumer data files with good postal code

quality and last name stored in a separate field, where storing phonetic keys on the

database may not be absolutely necessary. For more advice on this, please contact us.

Record Comparison

The developer using the matchIT API for comparing records must supply the two records

that constitute the candidate pair, as this operation is very specific to the database system

and platform being used, but the record generation process helps the developer filter

candidate pairs. Comparing records involves more work for the calling program than

generating keys, because the calling program must retrieve records from the source

database. There are four distinct ways of using the matchIT API for comparing records:

• Batch matching within a single file

• Comparing across files

• Online data capture

• Online inquiry

System Design

matchIT API Guide Page 5

Batch matching within a single file

This is the simplest use of the matchIT API – the steps you need to perform are as

follows:

1. Generate match keys for the table – using Engine.Generate().

2. Choose a match key.

3. Create an index on your table based on the match key (or use e.g. a SQL Select

statement to return groups of records with the same key).

4. Read the table in index order (or read through a group of records with the same

key) and for each and every pair of records with the same value of match key:

• Compare the two records – using Engine.Compare() – to find a

matching score;

• If the two records are good enough matches, store their reference

numbers and match score.

For example, if there are 4 records with the same match key value, you must compare

records 1 and 2, 1 and 3, 1 and 4, then go back to record 2 and compare records 2 and 3,

2 and 4, then go back to record 3 and compare records 3 and 4 – thus there are 6

comparisons for this group of 4 records.

NB: If there are an unexpectedly large number of records with the same match key

value, the process will take a long time for that key – so you may want to program in a

limit above which the calling program reports the number of records for that key value

and proceeds with the next key. This can happen with bad or skeletal data e.g. data with

missing address information. We have found that to allow for this type of data,

employing an approach using indexes gives more control and visibility than using SQL

Select.

5. Move to the next record with a different match key value and repeat the process

until end of file.

Repeat the steps above for each match key, then report the results and allow the user to

e.g. interactively delete duplicates or delete all duplicates that score above a given

threshold.

System Design

matchIT API Guide Page 6

Comparing across files

For two files, this process is essentially the same as batch matching within a single file,

but you are more likely to have different requirements after the matching e.g. merging

files, transferring of data between matching records etc. – this is made easy if you have

stored the reference numbers of the matching pairs. The steps you need to perform are as

follows:

1. Generate match keys for both tables – using Engine.Generate().

2. Choose a match key.

3. Create an index on the larger table (or both tables), based on the match key.

Although you can use e.g. a SQL Select statement if preferred, the rest of this

section assumes that you are using an index.

4. Read the smaller table either in physical order, or in order of the match key. The

advantage of reading it in order of the match key is that you can display

progress to the user in terms of match key values as well as numbers of records,

so they can see what kinds of match key cause the system to run more slowly.

5. For each record read, seek each record from the larger table which has the same

value of match key as the current record from the small table. For each pair thus

retrieved:

• Compare the records from the two files – using Engine.Compare() – to

find a matching score;

• If the two records are good enough matches, store their reference

numbers and match score.

6. Move to the next record with a different match key value and repeat the process

until end of file.

Repeat the steps above for each match key, then report the results and allow the user to

merge or purge, transfer data, etc.

Online data capture

To encourage the user to use the duplicate prevention features of any data capture

system, it must:

• save time;

• only display records that are good matches.

The matchIT API ensures the latter objective and (if the record exists on the system) can

achieve the first objective as well. The best way to ensure that the first objective is

achieved is to structure the data capture screen so that you ask the user to enter the most

useful lookup data first e.g. name or company name and postal code. Then you can do a

lookup on keys drawn from these data items and if matching records are found, allow the

System Design

matchIT API Guide Page 7

user to select one – which saves them time entering the address and other information, as

well as stopping them from unwittingly creating a duplicate record.

The matchIT API also allows you to perform a "failsafe" check for duplicates after the

address etc. has been entered, because you now have more data to match on and can stop

the user from creating a duplicate even if the zip or postal code was significantly

different – as long as the name and address match well.

The steps in each case are as follows:

1. Choose a match key or match keys (as described for Online inquiry);

2. Set an index on your existing data table that corresponds to the match key;

3. For the data entered, generate match key(s) using Engine.Generate();

4. Look for all records in the existing data table whose fields match your chosen

match key and for each of these:

• Compare with the new record using Engine.Compare();

• If any pairs score highly enough, save their reference numbers and

match score;

• Repeat until no more records match the new one.

5. If more than on match key is possible, repeat steps 2-4 for each match key;

6. If any matching records are found, display them to the user with the highest

scoring records first, so that they can choose whether to use an existing record,

or to add the new record.

Online inquiry

This is different from data capture, because the user expects to find a record and he/she

will enter only the minimum information that they expect to need to identify the right

record. The steps are as follows:

1. Choose a match key according to the information entered. Depending on what

the user searches on and the size of the database, it may be possible to use more

than one match key e.g. use name on its own in a smaller file or where the name

is unusual, but then look up name and company (or name and town/city) as well,

to allow for non-phonetic keying errors in the name. In this way, you could

return John Dell at Guthries Inc when the user enters John Bell at The Guthrey

Group;

2. Set an index on your existing data table that corresponds to the match key;

3. For the search criteria entered generate match key(s) using Engine.Generate();

4. Look for all records in the existing data table whose fields match your chosen

match key and for each of these:

• Compare with the new record using Engine.Compare();

System Design

matchIT API Guide Page 8

• If any pairs score highly enough, save their reference numbers and

match score;

• Repeat until no more records match the new one.

5. If more than one match key is possible, repeat steps 2-3 for each match key;

6. Display the matching records (and scores, if you wish) that reach a required

minimum score to the user, with the highest scoring records first. If no matching

records meet this minimum, you can lower the threshold score so that you only

show the fuzzier matches when there are no good matches – this avoids

displaying records that don’t match very well, if a good match is found.

Using the matchIT API

matchIT API Guide Page 9

Classes, Properties, and Methods

The matchIT API consists of a number of classes. These classes are listed and described

here along with their properties and/or methods.

Properties are listed according to hierarchical organization. For example, the

EngineSettings class has a property Jobtitle, accessible using

Engine.Settings.Generate.Organization.Extract.Jobtitle.

Class Description

Engine Provides the core interface for using and

configuring the matchIT API.

EngineSettings Contains all settings used by the Engine

class.

MatchingSettings (*) Contains settings used when calculating

final matching scores.

NameMatchingMatrix (*) Contains the lookup matrix used when

translating raw name matching results (e.g.

sounds-approx) into processed name

matching results (e.g. 0.333).

OrganizationMatchingMatrix

(*)

Contains the lookup matrix used when

translating raw organization matching

results into processed organization

matching results.

NamesAndWords Contains the data lookup tables. See Names

and Words Table for more information.

InputFields Contains the input data when generating

match keys.

Record Contains either the generated output data,

or the input data when comparing two

records.

CompareResult Contains the results obtained from

comparing two records.

MultiLevelMatchingResults Contains the comparison results after

processing with the relevant matching

matrix.

Scores Contains the final matching scores as

products of the processed results and the

engine’s weight values.

* Note that these are classes that cannot be instantiated, as they’re contained entirely

within the EngineSettings class and are only accessible via properties of it. The matchIT

API also contains a number of other classes that cannot be instantiated, but these are only

used to provide the hierarchical property structures and can therefore be ignored.

Using the matchIT API

matchIT API Guide Page 10

Engine class

This class provides the core interface for using and configuring the matchIT API.

Before the engine can be used, an instance must first be created and then the Initialize()

method called.

The engine provides methods including Generate() – for generating match keys for

searching databases – and Compare() – for comparing two records.

The engine’s configuration settings are structured in a hierarchical organization

accessible via the Settings property (which is an instance of the EngineSettings class).

Engine Properties

Properties Type

Settings (see EngineSettings

class)

Tables (see NamesAndWords

class)

LastError Text indicating any

licencing or deprecation

error.

Engine Methods

Initialize(NamesAndWords)

The engine must be initialized before using any other method or property. A

NamesAndWords object must be created and initialized before being passed into

Engine.Initialize().

Phoneticize(String, PhoneticAlgorithm) = String

Returns a string containing the phonetic representation of the word passed in.

ProperCase(String) = String

Returns a string containing the proper cased version of the passed string.

TypeOf(String) = FieldType

Using the matchIT API

matchIT API Guide Page 11

The string passed into this method is analyzed and its type (e.g. name, address, postal

code, etc.) is determined and returned (FieldType is an enumeration, see Appendix A

Enumeration C).

Generate(InputFields, Record)

This method processes the input fields and outputs a record object consisting of

generated match keys and normalized input data, which is used for finding records in a

database.

GenerateEx(InputFields, Record, EngineSettings)

See the Generate() method above.

Note that this method will use the supplied settings instead of the Engine’s current

settings (which are not affected).

Compare(Record, Record, CompareResult)

This method compares two records. The results are output in the CompareResult object

that must first be created and then passed into this method. The results can then be passed

to Engine.ApplyMatchingRules() for further processing.

CompareEx(Record, Record, CompareResult, EngineSettings)

See the Compare() method above.

Note that this method will use the supplied settings instead of the Engine’s current

settings (which are not affected).

ApplyMatchingRules(CompareResult,
MultiLevelMatchingResults)

This method takes the raw comparison results obtained from Engine.Compare(), and

outputs a series of results calculated in conjunction with the matching matrices. These

individual results are real numbers in the range 0 to 1, indicating the likelihood that

components within the compared results are a sure match.

Score(MultiLevelMatchingResults, Scores)

This method takes the processed results from Engine.ApplyMatchingRules() and outputs

a populated Scores class. Each resultant score is the product of each individual multi-

level matching result and the relevant weight (as set in e.g.

Engine.Settings.MatchingRules.IndividualLevel.Weights.Name.Weight).

Using the matchIT API

matchIT API Guide Page 12

EngineSettings class

This class provides the core interface for configuring the matchIT API.

Usually, the matchIT API is configured by using the properties of the Engine.Settings

object.

Alternatively, an EngineSettings object can be created and passed into the

Engine.GenerateEx() and Engine.CompareEx() methods to use different settings

without affecting the Engine’s current settings.

EngineSettings Properties

Properties Type

NationalityOfData Country, see Appendix

A: Enumeration A

Generate

.Address.AbbreviateRegion Boolean

.Address.DefaultThoroughfareLine Integer

.Address.Extract.Country Extraction, see Appendix

A: Enumeration B:

.Address.Extract.Postcode Extraction, see Appendix

A: Enumeration B:

.Address.Extract.Premise Extraction, see Appendix

A: Enumeration B:

.Address.Extract.Region Extraction, see Appendix

A: Enumeration B:

.Address.Extract.Thoroughfare Extraction, see Appendix

A: Enumeration B:

.Address.Extract.Town Extraction, see Appendix

A: Enumeration B:

.Address.Extract.PostTownsOnly Boolean

.Address.NumOfLinesToScan Integer

.Address.PremiseFirst Boolean

.Address.UpperCaseTown Boolean

.Address.VerifyPostcode Boolean

.ConsiderCasing Boolean

.DropExcludedWords Boolean

.Name.ContactFullName Boolean

Using the matchIT API

matchIT API Guide Page 13

Properties Type

.Name.DefaultGender Gender, see Appendix A:

Enumeration D

.Name.DefaultSalutation String

.Name.DetectInverseNames Boolean

.Name.EnhancedDoubleBarrelledLookup Boolean

.Name.GenerateContact Boolean

.Name.JoinMarriedPrefixes Boolean

.Name.ParseAsNormalizedName Boolean

.Name.ParseNameElements Boolean

.Name.ProcessBlankLastName Boolean

.Name.ReplaceAndWithAmpersand Boolean

.Name.UseEquivalentNames Boolean

.NormalizationDelimiter Char

.Organization.Extract.Jobtitle Extraction, see Appendix

A: Enumeration B:

.Organization.Extract.Name Extraction, see Appendix

A: Enumeration B:

.Organization.IgnoreParentheses Boolean

.Organization.IgnoreTrailingPostTown Boolean

.Organization.JoinInitials Boolean

.Organization.NormalizationTruncation Integer

.Organization.UseEquivalentName Boolean

.ProperCase Boolean

.Quality.Enabled Boolean

.Quality.Address.AllowBlankPostcode Boolean

.Quality.Address.Country Boolean

.Quality.Address.MaxRepetition Double

.Quality.Address.Premise Boolean

.Quality.Address.Region Boolean

.Quality.Email.MaxRepetition Double

.Quality.Email.WebmailFiltering Boolean

.Quality.Name.MaxRepetition Double

.ReportUnrecognisedWords Callback

.SpecialCaseMac Boolean

Using the matchIT API

matchIT API Guide Page 14

Properties Type

.VariableKeysMaxLength Integer

Compare

.Address.DefaultDeliveryPoints String

.Address.DefaultThoroughfareLine Integer

.Address.IgnorePremiseSuffix Boolean

.Address.LooseFuzzyPremiseMatch Boolean

.Address.MatchBoxNumberAndPostcode Boolean

.Address.MatchDeliveryPoints Boolean

.Address.MatchDeliveryPointsThreshold double

.Address.UsePremiseRange Boolean

.Name.FuzzyMatchNonNormalizedName Boolean

.Name.OrganizationMatchingOnBlankNames Boolean

.Name.PreventMrsMatchingMiss Boolean

.Phonetic.Algorithm PhoneticAlgorithm, see

Appendix A:

Enumeration F

.Phonetic.AlgorithmForFirstNames PhoneticAlgorithm, see

Appendix A:

Enumeration F

.LooseThresholdForDynamicSoundIT Integer

MatchingRules

.IndividualLevel (see MatchingSettings

class)

.FamilyLevel (see MatchingSettings

class)

.HouseholdLevel (see MatchingSettings

class)

.BusinessLevel (see MatchingSettings

class)

.CustomLevel (see MatchingSettings

class)

EngineSettings Property Usage

EngineSettings.NationalityOfData

This property primarily influences processing of the POSTCODE field:

Using the matchIT API

matchIT API Guide Page 15

• it works in conjunction with the Settings.Generate.Address.Extract.Postcode

property to determine whether a string in the address is determined to be a

postal code and should be moved to the Postcode field.

• it works in conjunction with the Settings.Generate.Address.VerifyPostcode

property to determine whether a string in the address or Postcode field has an

alphanumeric error e.g. 5 when it should be S.

• it works in conjunction with the Postcode.Weight matching property (e.g.

Settings.MatchingRules.IndividualLevel.Weights.Postcode.Weight) for

matching: different countries have different standards for how specific a

postcode is e.g. one per town, one per street, several per street; hence two full

UK postcodes that match will get a higher score than two 5 digit US zip codes

that match.

EngineSettings.Generate…

The following settings are used when the matchIT API generates a record (i.e. for key

generation, and data standardisation and casing):

EngineSettings.Generate.Address.AbbreviateRegion

Set this property to True if you want the matchIT API to abbreviate States or Provinces

when processing address lines e.g. to change “Pennsylvania” to “PA”.

EngineSettings.Generate.Address.DefaultThoroughfareLine

This property is used when the matchIT API is generating a phonetic address key, for

which it needs to know the thoroughfare (e.g. street) and the town in the address. If it

cannot locate a thoroughfare in the address, usually because it cannot find a word to

indicate one, such as “Street”, then the API will assume that the thoroughfare is the

contents of the address line indicated by this property (if it is greater than zero). For

example, if this property is set to 2, then the API will take the contents of address line 2

as the thoroughfare if it cannot find a thoroughfare word in the address. This property

should only be used if the addresses in your data are very rigidly structured.

EngineSettings.Generate.Address.Extract

This group of properties applies to Country, Postcode, Premise, Region, Thoroughfare

and Town. It enables different types of data to be moved or copied from specific fields

(in most cases the address lines) to designated fields that were explicitly added to store

that type of data. These properties can be used to greatly improve the structure and

consistency of the data, which can inherently improve results obtained during the

Compare stage.

Each of these properties can either be set to “MoveExtract”, “CopyExtract” or “Leave”.

If the property is set to “MoveExtract”, the corresponding data with will be moved from

its original field into the designated field. When set to “CopyExtract”, the data will be

copied into the designated field, and will still remain in the original field. When set to

“Leave”, the corresponding data will not be copied or moved.

Each of these properties will be ignored if the relevant Record property required to copy

or move the data into does not exist.

Using the matchIT API

matchIT API Guide Page 16

If the Settings.Generate.ProperCase property is set to True, moved and copied data (with

the exception of premise (i.e. building) numbers and postcodes) will be correctly cased.

The different properties in this group are listed below with a description of data that each

corresponds to, and any other information specific to that property…

EngineSettings.Generate.Address.Extract.Country

This will move or copy valid countries found in the address lines (based on Country type

entries found in the NAMES.DAT file) into a field labeled ‘COUNTRY’.

EngineSettings.Generate.Address.Extract.Postcode

This will move or copy UK postcodes, or US zip codes found in the address lines into a

field labelled POSTCODE.

Only UK postcodes with an outward half that is valid according to the MAILSORT.DAT

file will be extracted. It is advisable to set this property to “MoveExtract” rather than

“CopyExtract” if using this data for mailing or updating a database.

EngineSettings.Generate.Address.Extract.Premise

This will move or copy premise numbers found in the address lines into a field labelled

PREMISE.

It is not advisable to Extract the premise if you want to output the updated address later,

as the API will not know which address line the premise number came from. It can

however be useful to copy premise numbers, as this enables the inclusion of the

PREMISE field as part of the match keys used during the compare stage, which can

increase efficiency and accuracy when working on large files, or files containing very

localized data.

EngineSettings.Generate.Address.Extract.Region

This will move or copy US, Canadian or Australian states or provinces, or valid UK

counties (or other regions found in the NAMES.DAT file), that are found in the address

lines into a field labelled REGION.

EngineSettings.Generate.Address.Extract.Thoroughfare

This will move or copy address data recognized as the thoroughfare of the address (based

on Address type entries found in the NAMES.DAT file) into a field labelled

THOROUGHFARE.

EngineSettings.Generate.Address.Extract.Town

This will move or copy address data recognized as the town or city from the address lines

to a field labelled TOWN.

EngineSettings.Generate.Address.Extract.PostTownsOnly

If this is enabled, together with Settings.Generate.Address.Extract.Town, then only post

towns (i.e. any towns found in the TOWNS.DAT file) will be moved or copied.

Using the matchIT API

matchIT API Guide Page 17

EngineSettings.Generate.Address.NumOfLinesToScan

This property enables personal names to be extracted from address lines. It can be set to

1 or 2. If set to 1, only the first address line will be scanned for names. If set to 2, both

the first and second address lines will be scanned and have names extracted from them if

found. Any personal names found can then be used for the generation of Contacts and

Salutations.

If either or both of the Settings.Generate.Organization.Extract.Jobtitle and

Settings.Generate.Organization.ExtractName properties are used in conjunction with this

one, the matchIT API will not only scan the ADDRESSEE field for job titles and

business names, but will also scan the corresponding number of address lines

EngineSettings.Generate.Address.PremiseFirst

When parsing an address, this Boolean property indicates whether to expect the premise

or flat number to come first in address lines when the flat is not explicitly specified (e.g.

“Flat 5”).

EngineSettings.Generate.Address.UpperCaseTown

This applies to UK addresses only. Set this property to True to convert the post town in

the address to capitals. Note that, if the Settings.Generate.ProperCase property is set to

False, then this property is ignored.

EngineSettings.Generate.Address.VerifyPostcode

If set to True, this property verifies and corrects the format of the postcode. Numerics are

changed to alphas and vice versa where appropriate. This feature makes use of the rules

concerning the alphanumeric structure of the postcode. e.g. it changes “KT22 BDN” to

“KT22 8DN” – it will change 0, 1, 5 and 8 to O, I, S and B, or vice versa, if that makes

the postcode alphanumerically correct. The matchIT API will not verify or correct the

format of postcodes that are not in the postcode field.

EngineSettings.Generate.ConsiderCasing

If this property is set to True, then the matchIT API will consider the casing of the

incoming data when it is splitting the data up for extracting keys, proper casing, and so

forth. This is mainly used for the extraction of name data. For instance, consider the

name:

EngineSettings.Generate.DropExcludedWords

With this property set to True, during the generate step the matchIT API will flag any

records that contain exclusion words in any of the key fields (fields such as addressee,

company or the address lines). Such exclusion words include “Deceased”, “Addressee”

(indicating a record may be a header record) and any other Exclusion type entries in the

NAMES.DAT file. Records are flagged by setting the first character of the

Record.DataFlags property to “X”.

Using the matchIT API

matchIT API Guide Page 18

EngineSettings.Generate.Name.ContactFullName

Set this property to True to include the full first name of any incoming name in the

CONTACT field; just the initial will be used if the property is False. For example, if the

property is True, and the incoming name is “John Smith”, then the generated contact will

be “Mr John Smith”, if it is False, then the contact will be “Mr J Smith”.

EngineSettings.Generate.Name.DefaultGender

The Default Gender property is the gender to assume when the matchIT API can’t

determine whether the name is male or female e.g. Chris Smith, C Smith. If you set this

property to Male or Female, the API will assume it to be male or female accordingly, and

develop a salutation using Mr or Ms as the prefix.

EngineSettings.Generate.Name.DefaultSalutation

This property determines the default salutation, either where the API can't determine one

(for example, C Smith or Chris Smith, which could be either Mr or Ms), or where the

Prefix supplied doesn’t have a salutation rule. If you include the word ”Dear” as at the

start of the default salutation (i.e. actually specify "Dear Customer" and not just

"Customer", then all the salutations derived by the matchIT API will start with the word

"Dear" unless the salutation for the type of title (or prefix) specifies "Title" only. For

example, Mr J Smith will result in a salutation of "Dear Mr Smith" whereas The Bishop

of Liverpool will result in a salutation of "My Lord".

EngineSettings.Generate.Name.DetectInverseNames

With this property enabled, the matchIT API will attempt to identify addressee names

that have been specified with the lastname preceding the firstnames, provided a comma

delimiter follows the lastname (for example, “Smith, John” where Smith is the lastname).

Without a comma, a name is assumed to be in standard left-to-right format, with the

firstnames preceding the lastname.

This setting is disabled by default.

EngineSettings.Generate.Name.EnhancedDoubleBarrelledLookup

When enabled, this property will cause an unrecognised middle name to be considered

part of a non-hyphenated double-barrelled last name (for example, where the full name is

John Harrington Jones, the last name will be considered Harrington -Jones because

Harrington is not a recognised first name).

EngineSettings.Generate.Name.GenerateContact

With this property set to True, the matchIT API will generate a contact for the input

name. The contact will be structured in same way as you would expect to find its

corresponding input name on e.g. the front of an envelope. For example, the input name

of “John Smith” or “Mr Smith” would result in a generated contact of “Mr J Smith”.

An accurate contact value cannot be generated when the matchIT API is unable to

determine the gender of a input name. In this situation, the generated contact would be

equal to the input name. e.g. “J Smith” as an input name would result in a generated

contact of “J Smith”.

Using the matchIT API

matchIT API Guide Page 19

EngineSettings.Generate.Name.JoinMarriedPrefixes

With this property set to True, multiple addressees with the same last name will be

treated as married e.g. input names of “Mr. John Smith and Ms. Mary Smith” or “Mr

John Smith & Mary Smith” would have a Salutation generated of “Mr and Mrs Smith”

and a Contact generated of “Mr and Mrs J Smith” or “Mr and Mrs John Smith”.

EngineSettings.Generate.Name.ParseAsNormalizedName

When enabled, addressee names are assumed to be in a delimited normalized format

similar to the Record.MatchingFields.NormalizedName value that’s output by

Engine.Generate(). Currently supported delimiters are spaces, commas, semicolons, and

pipes (‘|’).

This property is disabled by default.

EngineSettings.Generate.Name.ParseNameElements

When enabled, this will cause input name elements (including prefix, firstnames, and

lastname) to be parsed. If the matchIT API deems any values to have been entered into

an incorrect field (for example, suffixes and qualifications in the lastname field), it will

reassign these values into the correct fields.

This property is disabled by default, so that any such incorrect values are not reassigned.

EngineSettings.Generate.Name.ProcessBlankLastName

With this property enabled, a blank lastname will cause extra processing to be performed

on other input data to help detect typographical errors. For example, if a firstname was

entered but not a lastname, then it’ll be assumed that the firstname is in fact the lastname

and match keys will be generated rather than being left blank.

This property is disabled by default.

EngineSettings.Generate.Name.ReplaceAndWithAmpersand

On return from Engine.Generate() the matchIT API will, by default, convert ‘and’ to an

ampersand when outputting InputFields.Name.Addressee. Disabling this property will

prevent this behaviour.

EngineSettings.Generate.Name.UseEquivalentNames

If you set the Use Equivalent Name property to True, in the generated the matchIT API

replaces the first name with its equivalent from the NAMES.DAT file, if there is an entry

for the input first name. This enables, for example, “Tony Smith” and “Anthony Smith”

to be picked up as a match. The initial of the original first name is stored in the

Record.DataFlags property to enable, for example, “Tony Smith” and “T Smith” to still

be matched.

EngineSettings.Generate.NormalizationDelimiter

This setting (default is a comma, ‘,’) contains the delimiter that’s used when generating

the Record.MatchingFields.NormalizedName and

Record.MatchingFields.NormalizedOrganization values. This could be useful when

Using the matchIT API

matchIT API Guide Page 20

outputting values to a comma-delimited file, for example, so that an alternative character

(such as a pipe ‘|’) could instead be used.

EngineSettings.Generate.Organization.Extract.Jobtitle

This will copy or extract job titles contained within the ADDRESSEE field into a field

labeled JOB_TITLE.

Job Titles are recognized by having a word or string defined as a Job Title in the

NAMES.DAT file e.g. Director.

EngineSettings.Generate.Organization.ExtractName

This will copy or extract any business names contained within the ADDRESSEE field

into a field labeled COMPANY.

Business names are recognized by having a word or string defined as a Business word in

the NAMES.DAT file e.g. Ltd. Care should be taken when using this property, as words

like "Bank" can be taken to indicate a Business when this isn't the case (e.g. it may be a

last name or part of an address line).

If you want Extract Company Name processing to be applied also to the first one or two

lines of the address, you must Set the property

Settings.Generate.Address.NumOfLinesToScan to either 1 or 2.

EngineSettings.Generate.Organization.IgnoreParentheses

With this property enabled, any words that are enclosed with parentheses within an

organization name will be excluded from the phonetic organization keys. This can be

useful for records such as Remnel Ltd and Remnel (UK) Ltd, to ensure records with

these company names are compared if the phonetic organization keys are being used as

part of composite match keys.

EngineSettings.Generate.Organization.IgnoreTrailingPostTown

This property, when enabled, will exclude from the phonetic organization keys any

trailing post town (defined in towns.dat, see Towns Table) or UK county that appears at

the end of a company name. For example, the phonetic organization keys for Handso Ltd

and Handso Essex Ltd will be the same to help ensure such records will be compared.

EngineSettings.Generate.Organization.JoinInitials

Set this property to True if you want a group of initials separated by spaces or dots in a

company name to be concatenated. For example, if this property is True, then “I B M”

and “I.B.M.” will be replaced by “IBM”. Note that, if the Settings.Generate.ProperCase

property is set to False, then this property will have no effect.

EngineSettings.Generate.Organization.NormalizationTruncation

Disabled by default (i.e. set to 0) If this setting is enabled, and the organization consists

of more than four words, then the third element of

Record.MatchingFields.NormalizedOrganization will be truncated to the first N

characters of each word after the first two (where N is the value of this setting).

Using the matchIT API

matchIT API Guide Page 21

EngineSettings.Generate.Organization.UseEquivalentName

If this property is set to True, then the equivalent (according to the NAMES.DAT file) of

words indicating a business name, such as “Motors” or “Services” are included in the

Record.NormalizedOrganization property and the corresponding phonetic keys. This

enables, for example, “Wood Green Cars” to match “Wood Green Motors” well (because

“Cars” has an equivalent of “Motors”), but ensures that neither of them match “Wood

Green Carpets” well.

If you set this property to True, you should change any words in the NAMES.DAT file

that you do want ignored, such as “Ltd” and “Inc” to Noise type so that they are not

included in the Record.NormalizedOrganization property. As a rule of thumb, if you are

doing business matching on a file that is very geographically concentrated, that is,

contains records mostly from the same immediate area, then set the

Settings.Generate.Organization.UseEquivalentName property to True, otherwise set it to

False.

EngineSettings.Generate.ProperCase

If this property is set to True, the Generate step will convert the address lines in your

records (labeled ADDRESS1, ADDRESS2... ADDRESSn) to their proper case. This

proper casing will handle punctuation, apostrophes and abbreviations. It will also convert

ADDRESSEE, JOB_TITLE, DEPARTMENT, and COMPANY to the correct case.

Exceptions to the default casing rules are held in the NAMES.DAT file.

The API's default rules for casing data are as follows: letters following an apostrophe are

capitalized (e.g. “Mr O’Reilly”), as are letters following “Mc” or (subject to one of the

Advanced Input Options) “Mac” at the start of a name (see "Mac Name Treatment").

Double-barreled names have a capital letter after the hyphen. If the name or other word

has a proper casing entry in the NAMES.DAT file, it is cased as shown there e.g. BSc,

helpIT, IBM, plc. If not in the NAMES.DAT file, words are all capitals if they contain

no vowels, otherwise they are changed to initial capital followed by lower case letters.

EngineSettings.Generate.Quality.Enabled

By default, quality scoring is disabled and all quality scores are 0.

EngineSettings.Generate.Quality.Address.AllowBlankPostcode

If disabled (enabled by default) then addresses without a postal code are restricted to a

maximum quality score of 1.

EngineSettings.Generate.Quality.Address.Country

With this enabled, address quality scores will receive an extra one point if the address

contains a recognised country. This is disabled by default.

EngineSettings.Generate.Quality.Address.MaxRepetition

This setting (the default is 0.7) is used when calculating the repetition level of characters

within a string (in this case, all the concatenated address lines and elements). For

example, the string “Heheheb” contains seven characters, six of which are involved in

repeated sequences (he: hehehe); the repetition level is thus calculated as 6/7=0.857,

Using the matchIT API

matchIT API Guide Page 22

which exceeds the max repetition level and will therefore be flagged as nonsense and

achieve a quality score of 0.

EngineSettings.Generate.Quality.Address.Premise

With this enabled, address quality scores will receive an extra one point if the address

contains a premise number. This is disabled by default.

EngineSettings.Generate.Quality.Address.Region

With this enabled (the default), address quality scores will receive an extra one point if

the address contains a recognised region (e.g. county or state).

EngineSettings.Generate.Quality.Email.MaxRepetition

(See Settings.Generate.Quality.Address.MaxRepetition, above.)

EngineSettings.Generate.Quality.Email.WebmailFiltering

If enabled (default) then email addresses that use webmail provider (such as Hotmail,

Yahoo, & mail.com) domains are restricted to a maximum quality score of 7.

EngineSettings.Generate.Quality.Name.MaxRepetition

(See Settings.Generate.Quality.Address.MaxRepetition, above.)

EngineSettings.Generate.ReportUnrecognisedWords

This can specify a callback function that is used to notify the calling application of any

unrecognised words (i.e. not found within names.dat) that are encountered when parsing

records. The callback function is implemented as an object of a user-defined class that

derives from matchIT.IReportUnrecognisedWords.

EngineSettings.Generate.SpecialCaseMac

Where a last name begins with Mac, when formatting salutations, the matchIT API

follows this with a small letter or a capital letter, depending on this property. A value of

True will mean that MACLEAN will be formatted as MacLean. You can add exceptions

to the rule (e.g. Maccabee, Macclesfield, MacKay, Mackie) to the NAMES.DAT file. If

you invariably want to use a lower case letter following Mac, set this property to False.

NB: Names beginning Mach are always formatted with a lower case H, e.g. Machin,

Machinery. Names beginning Mc are formatted with a capital letter following, if they

are greater than 3 characters long.

EngineSettings.Generate.VariableKeysMaxLength

This specifies the maximum length of various variable-length phonetic keys created

when a record is generated. Such keys are PhoneticLastName, PhoneticFirstName,

PhoneticMiddleName, PhoneticOrganizationName1, PhoneticOrganizationName2,

Using the matchIT API

matchIT API Guide Page 23

PhoneticOrganizationName3, PhoneticStreet, and PhoneticTown. The default is eight

characters.

EngineSettings.Compare…

The following settings are used when the matchIT API compares two records:

EngineSettings.Compare.Address.DefaultThoroughfareLine

(See Settings.Generate.Address.DefaultThoroughfareLine, above.)

EngineSettings.Compare.Address.LooseFuzzyPremiseMatch

When enabled, this will cause two premises to match if one premise starts with the other

but contains extra trailing characters (for example, 88 and 88/2 will match, but 88 and

887 will not match).

EngineSettings.Compare.Address.MatchBoxNumberAndPostcode

If this setting is enabled, then two compared addresses score Sure if they contain

matching postal box numbers and postcodes (i.e. the remainder of the addresses are

ignored).

EngineSettings.Compare.Address.MatchDeliveryPoints

When enabled, this will prevent two addresses from matching when both contain two

postal codes but different delivery point codes (for example, DPS codes in the UK, DPV

codes in the US) and the addresses score below the minimum threshold.

If either record is missing a delivery point, or either is a default, then the addresses will

match regardless.

EngineSettings.Compare.Address.MatchDeliveryPointsThreshold

(See Settings.Compare.Address.MatchDeliveryPoints, above.)

EngineSettings.Compare.Address.DefaultDeliveryPoints

(See Settings.Compare.Address.MatchDeliveryPoints, above.)

EngineSettings.Compare.Address.IgnorePremiseSuffix

When enabled, this will cause two premises to be matched regardless of whether one or

both has an apartment- or flat-type suffix (for example, 12 and 12a). Normally, such

premises will cause the address score to be reduced because the addresses are considered

different, which could prevent the two records being flagged as a match.

Using the matchIT API

matchIT API Guide Page 24

EngineSettings.Compare.Address.UsePremiseRange

When this setting is enabled, this will allow addresses to contain premise ranges. For

example, if one record contains an address line of “11-15 Main Street” and the other “13

Main Street”, then the premises are considered a match with this setting enabled;

otherwise, the premises will not be matched and, depending on constraints and weights,

the addresses might not score a high enough score to be considered matching records.

EngineSettings.Compare.Name.FuzzyMatchNonNormalizedNames

When enabled (the default), this will cause additional matching checks to be performed

on names using the non-normalized name matching fields. This can be useful when

Settings.Generate.Name.UseEquivalentNames is enabled, which will allow Elizabeth and

Lisa to match, but will not allow for some misspellings and typos such as Lsia to match.

EngineSettings.Compare.Name.OrganizationMatchingOnBlankNames

When two records contain no addressee names, this setting will allow the names to

achieve a score depending on what’s available in the job title and company name fields.

For example, if the two records contain job titles of Managing Director and company

name of helpIT systems, then a positive name score will be given even though the

records don’t contain an addressee.

EngineSettings.Compare.Name.PreventMrsMatchingMiss

If this setting is enabled, then two compared names will not match if one has a title of

Mrs and the other a title of Miss. For example, “Mrs J Smith” will not match “Miss J

Smith” with the setting enabled (the default).

EngineSettings.Compare.Phonetic.Algorithm

There are two stages to the matching process that the matchIT API uses; the key stage

and the scoring stage. The first stage creates standardized and phonetic keys based on

the input data, which allows potential matches to be identified. The second stage scores

each pair of potential matches, using phonetic and fuzzy matching. This property

governs the phonetic algorithm that the API uses when scoring.

There are four choices available:

soundIT

The API provides a unique phonetic algorithm for name matching, called soundIT.

 soundIT takes account of vowel sounds and syllables in the name, and, more

importantly, determines the stressed syllable in the word. This means that "Batten" and

"Batton" sound the same according to soundIT, as the different letters fall in the

unstressed syllable, whilst "Batton" and "Button" sound different, as it is the stressed

syllable which differs. Another advantage of soundIT is that it can recognize groups of

vowels and consonants that form vowel sounds – thus it can equate "Shaw" and "Shore",

"Wight" and "White", "Naughton" and "Norton", and "Leighton" and "Layton" (which

are all reasonably common English last names).

This algorithm was developed with extensive testing on a large table of the most

common last names in the UK. Therefore, it is specifically designed to be used with

English names. If a file with mostly non-English names is processed through the

Using the matchIT API

matchIT API Guide Page 25

matchIT API, then you may want to try the ‘Loose’ soundIT or Soundex algorithms

instead. For US data we recommend that you use soundIT, because it is proven to work

well also with Spanish, German and other names that occur commonly in the US.

 soundIT has been designed with foreign language versions in mind (i.e. for data

collected in countries where foreign languages are spoken). These could quite easily be

developed, according to demand. Please contact your supplier if you are interested in

this.

Note that the keys that the matchIT API generates are ‘Loose’ soundIT keys, where all

vowel sounds are equated, together with some consonants, such as ‘m’ and ‘n’, ‘d’ and

‘t’, ‘s’ and ‘f’. This is so that potential matches are not missed from candidate match

groups based on the phonetic keys; The API uses the ‘full’ soundIT algorithm at the

scoring stage, for matching accuracy.

Loose soundIT

This option is effectively the same as the soundIT option, except that the API uses the

‘Loose’ soundIT algorithm as described above at the scoring stage. This is for use

mainly with non-English names, on which soundIT works less effectively, and can miss

True matches. This option should not be used on files with mainly English names, as it

can potentially lead to more false matches.

Dynamic soundIT

This is a hybrid of the soundIT and Loose soundIT phonetic algorithms. Firstly, the loose

algorithm is used to generate the phonetic form of a word. By default, if it contains only

one vowel sound, then the standard soundIT algorithm is used instead. This can improve

accuracy when matching mono-syllabic words and can help to reduce the number of false

matches.

See EngineSettings.Compare.Phonetic.LooseThresholdForDynamicSoundIT below.

Soundex

Soundex is a widely-used algorithm (patented just after the First World War!), which

constructs a crude non-phonetic key by keeping the initial letter of the name, then

removing all vowels, plus the letters H, W and Y, and translating the remaining letters to

numbers. It gives the same number to letters that can be confused e.g. ‘m’ and ‘n’ both

become 5. It also drops repeated consonants and consecutive letters that give the same

number e.g. S and C. It only takes the first four characters of the result, or pads it out

with zeroes if it is less than four long. Thus all the common spellings and misspellings of

the name "Tootill" equate to the same Soundex key: Tootill, Toothill, Tootil, Tootal,

Tootle, Tuthill, Totill are all translated to "T340".

The algorithm that the matchIT API uses is an enhanced version of Soundex, and is for

use mainly with non-English names. This option should not be used on files with mainly

English names, as it can lead to False matches e.g. Brady, Beard and Broad get the same

Soundex key.

Non-phonetic

This option constructs a non-phonetic version of the supplied name fields as match keys

and allows only non-phonetic name matching.

Using the matchIT API

matchIT API Guide Page 26

EngineSettings.Compare.Phonetic.AlgorithmForFirstNames

By default, this property is set to PhoneticAlgorithm.None which simply means that

EngineSettings.Compare.Phonetic.Algorithm will be used.

 Otherwise, all first names will be phoneticised using this setting.

This can be useful to impose a ‘tighter’ level of matching for first names than for last

names, where firstnames are often abbreviated to short forms.

EngineSettings.Compare.Phonetic.LooseThresholdForDynamicSoundIT

When Dynamic soundIT is in use, this property controls the threshold at which soundIT

is switched to Loose soundIT. The default is 2, which means that words containing less

than two syllables are phoneticised using soundIT instead of Loose soundIT.

EngineSettings Methods

ToXML(String)

This method returns the engine’s current settings as an XML-formatted string. Note that

the XML schema follows the layout of the engine’s COM hierarchy (for example, the

settings/compare/phonetic/algorithm node in the XML can be accessed via the

Engine.Settings.Compare.Phonetic.Algorithm property in code).

FromXML(String)

This method applies the settings in the passed XML-formatted string to the engine. Note

that any number of settings can be specified in the XML, not all need be specified. If the

method returns an error (i.e. the XML is invalid), an error message string can be retrieved

using the Engine.LastError property.

Copy(EngineSettings)

This method copies the settings from the specified EngineSettings object.

For example, to make a copy of the engine’s current settings, use:

EngineSettings temp = new EngineSettings();

temp.Copy(engine.Settings);

Using the matchIT API

matchIT API Guide Page 27

MatchingSettings class

Note that it is not possible to create an instance of this class – it is only accessible via

EngineSettings.MatchingRules.*Level (where * is one of Individual, Family, Household,

Business, or Custom). See Matching Levels for more info.

This class exists only within the Engine class, as one of five levels (i.e. individual,

family, household, business, and custom). Each MatchingSettings instance contains

several matching constraints, a number of weight values used when processing raw

comparison results via the Engine.ApplyMatchingScores() method, a name matching

matrix, and an organization matching matrix.

MatchingSettings Properties and Methods

Properties Type

Constraints.MustMatchGender Boolean

Constraints.MustMatchLocation Boolean

Constraints.MustMatchPremise Boolean

Constraints.NoOneEmptyPremise Boolean

Constraints.AllowFuzzyPremiseMatch Boolean

Constraints.MustMatchSuffix Boolean

Constraints.MustMatchDirectional Boolean

Constraints.MustMatchNumericStreetName Boolean

Constraints.MustMatchJointNames Boolean

Constraints.MustMatchBuilding Boolean

Constraints.NoOneEmptyBuilding Boolean

Weights.Name.SetMatrixWeights() double, double, double

Weights.Name.GetMatrixWeights() double, double, double

Weights.Name.BothEmptyScore double

Weights.Name.OneEmptyScore double

Weights.Organization… as Weights.Name

Weights.Address.SetWeights() double, double, double

Weights.Address.GetWeights() double, double, double

Weights.Address.BothEmptyScore double

Weights.Address.OneEmptyScore double

Using the matchIT API

matchIT API Guide Page 28

Weights.Postcode… as Weights.Address

Weights.Telephone… as Weights.Address

Weights.Email… as Weights.Address

Weights.DateOfBirth… as Weights.Address

Thresholds.Name double

Thresholds.Organization double

Thresholds.Address double

Thresholds.Postcode double

Thresholds.Telephone double

Thresholds.Email double

Thresholds.DateOfBirth double

NameMatchingMatrix (see NameMatchingMatrix class)

OrganizationMatchingMatrix (see OrganizationMatchingMatrix

class)

MatchingSettings Property Usage

EngineSettings.MatchingRules.*Level.Constraints…

There are different copies of each of the properties below; one for each of the different

matching levels (Business, Family, Household and Individual). For Example,

Settings.MatchingRules.IndividualLevel.Constraints.MustMatchGender would be set

differently to Settings.MatchingRules.FamilyLevel.Constraints.MustMatchGender.

MustMatchGender

When this property is set to True, potential matches will be disregarded if their genders

differ. If however the gender is unknown in one or both of the records, the records will

potentially be classed as a match.

MustMatchLocation

When this property is set to True, potential matches will be disregarded if their address

locations differ. In detail, this means that the postcodes in the two records (if present)

must achieve at least a probable match with the address score at least a Possible match,

or the address score must be at least a Likely match irrespective of the postcodes, or the

postcodes must achieve a Sure match irrespective of the address. This is to prevent false

matches where there is some match on address, but where the addresses are clearly not

the same, for example "10 High Street, Bookham", and "10 High Street, Alford". Switch

this constraint off if you want to match people or companies in different locations; you

may want to match on items of data that are independent of location, such as date of birth

or bank account. See also the topic "What matching weights should I use for my data?"

in the matchIT API Frequently Asked Questions.

Using the matchIT API

matchIT API Guide Page 29

MustMatchPremise

When this property is set to True, potential matches will be disregarded if their premise

numbers differ. If however the premise number is unknown (e.g. one record or both

records may contain a premise name), the records will potentially be classed as a match.

NoOneEmptyPremise

When this property is set to True, potential matches will be disregarded if one of the

addresses is missing a premise number.

AllowFuzzyPremiseMatch

When both this and MustMatchPremise are set to True, then potential matches will be

disregarded if the premises are not exact matches (for example, 71 and 71) or if they’re

not fuzzy matches (for example 71 and 71A, 45 and 54, or 71 and 7). Note that this

property has no effect if MustMatchPremise is set to False because, in that case, fuzzy

premises are always allowed.

MustMatchSuffix

When this property is set to True, potential matches will be disregarded if their suffixes

differ. If however the suffix is unknown in one or both of the records, the records will

potentially be classed as a match.

MustMatchDirectional

When this property is set to True, potential matches will be disregarded if both addresses

(i.e. typically US) have a pre- or post-directional (e.g. N, North, E, etc.) but they don’t

match. For example, with this constraint enabled, “N Washington Ave” and “S

Washington Ave” will not be matched.

MustMatchNumericStreetName

When this property is set to True, potential matches will be disregarded if both addresses

(i.e. typically US) have a numeric street name but they don’t match. For example, with

this constraint enabled, “5
th
 Ave” and “15

th
 Ave” will not be matched.

MustMatchJointNames

When this property is set to True, potential matches will be disregarded if one record has

a joint name but the other doesn’t. For example, normal behaviour will match “Mr & Mrs

J Smith” with “Mr J Smith”; setting this property to True will prevent such matches.

MustMatchBuilding

When this property is set to True, potential matches will be disregarded if their building

names differ. If however one or both addresses do not contain a building name, the

records will potentially be classed as a match.

Using the matchIT API

matchIT API Guide Page 30

NoOneEmptyBuilding

When this property is set to True, potential matches will be disregarded if one of the

addresses is missing a building name.

EngineSettings.MatchingRules.*Level.Weights.#...

Where * is one of Individual, Family, Household, Business, or Custom and # is one of

Name, Organization, Address, Postcode, Telephone, Email, or DateOfBirth.

For each of the four following methods/properties, there is a different copy of the

method/property for each of the five different matching levels.

SetMatrixWeights()

Regenerates the current name or organization matching matrix using the supplied sure,

likely, and possible weight values.

SetWeights()

Sets the sure, likely, and possible weights that are used to score compared items (NB: not

names and organizations, use SetMatrixWeights() instead).

Sure specifies the maximum score to be returned when the two compared items match. If

they’re not identical, but similar, then either likely or possible will be scored depending

on the field being compared and the data being compared.

BothEmptyScore

This property specifies the score to be returned when both compared items are empty.

OneEmptyScore

This property specifies the score to be returned when one of the two compared items are

empty.

EngineSettings.MatchingRules.*Level.Thresholds.#

Where * is one of Individual, Family, Household, Business, or Custom and # is one of

Name, Organization, Address, Postcode, Telephone, Email, or DateOfBirth.

Thresholds are applied in this order, to prevent two records from matching when the

cumulative total score fails to reach any threshold (all default to 0).

For example, suppose the postcode threshold is set at 100, the weights for name, address,

and postcode are set at 60, 30, and 35 respectively, and that the three components are

each scoring Sure. The name threshold (0) will be checked with a cumulative score of 60,

the address threshold (0) will be checked with a cumulative score of 90, and the postcode

threshold (100) will be checked with a cumulative score of 125. All three thresholds are

reached. However, should the names score 25 (Possible), then the cumulative score will

be 25, 55, and 90 at the same three points; the postcode threshold (100) will therefore not

be reached, thus the two records will score 0.

Using the matchIT API

matchIT API Guide Page 31

NameMatchingMatrix class

Note that it is not possible to create an instance of this class – it is only accessible via

EngineSettings.MatchingRules.*Level.NameMatchingMatrix (where * is one of

Individual, Family, Household, Business, or Custom). See Matching Levels for more

info.

The name matching matrix – of which there is one for each of the five matching levels

(individual, family, household, business, custom) – is a three-dimensional matrix used to

process the raw matching results that are output from the Engine.Compare() method,

using the Engine.ApplyMatchingResults() method.

The raw matching results indicate the comparison result between fields of the two

records – for example, the names could be sounds-equal. Using the name matching

matrix as a lookup, the raw results are then transformed using the Engine.Score()

method into final matching scores.

These scores are the product of the relevant cell value from the matrix and the relevant

level’s component weight (e.g. cell * weight, where cell is

Level.LastNamesEqual.FirstNamesEqual.MiddleNamesBothEmpty, and weight is

Level.Weights.Name.Weight, assuming Level is

Engine.Settings.MatchingRules.IndividualLevel).

NameMatchingMatrix Properties

Properties Type

LastNamesEqual.FirstNamesEqual.MiddleNamesEqual double

LastNamesEqual.FirstNamesEqual.MiddleNamesBothEmpty double

LastNamesEqual.FirstNamesEqual.MiddleNamesOneEmpty double

LastNamesEqual.FirstNamesEqual.MiddleNamesApprox double

LastNamesEqual.FirstNamesEqual.MiddleNamesContain double

LastNamesEqual.FirstNamesEqual.MiddleNamesUnequal double

LastNamesEqual.FirstNamesSoundEqual… double

LastNamesEqual.FirstNamesBothEmpty… double

LastNamesEqual.FirstNamesOneEmpty… double

LastNamesEqual.FirstNamesApprox… double

LastNamesEqual.FirstNamesSoundApprox… double

LastNamesEqual.FirstNamesContain… double

LastNamesEqual.FirstNamesUnequal… double

LastNamesSoundEqual… double

Using the matchIT API

matchIT API Guide Page 32

LastNamesApprox… double

LastNamesSoundApprox… double

LastNamesContains… double

LastNamesUnequal… double

NameMatchingMatrix Methods

Set(NameMatchingMatrix)

This method is simply used for copying the specified name matching matrix, overwriting

that which is currently stored in an object of this class.

Using the matchIT API

matchIT API Guide Page 33

OrganizationMatchingMatrix class

Note that it is not possible to create an instance of this class – it is only accessible via

EngineSettings.MatchingRules.*Level.OrganizationMatchingMatrix (where * is one of

Individual, Family, Household, Business, or Custom). See Matching Levels for more

info.

An organization matching matrix is effectively identical to a name matching matrix (see

NameMatchingMatrix class), but used specifically when comparing organizations instead

of names.

Using the matchIT API

OrganizationMatchingMatrix Properties

Properties Type

Name1Equal.Name2Equal.Name3Equal double

Name1Equal.Name2Equal.Name3BothEmpty double

Name1Equal.Name2Equal.Name3OneEmpty double

Name1Equal.Name2Equal.Name3Approx double

Name1Equal.Name2Equal.Name3Contain double

Name1Equal.Name2Equal.Name3Unequal double

Name1Equal.Name2SoundEqual… double

Name1Equal.Name2BothEmpty… double

Name1Equal.Name2OneEmpty… double

Name1Equal.Name2Approx… double

Name1Equal.Name2SoundApprox… double

Name1Equal.Name2Contain… double

Name1Equal.Name2Unequal… double

Name1SoundEqual… double

Name1Approx… double

Name1SoundApprox… double

Name1Contains… double

Name1Unequal… double

Using the matchIT API

OrganizationMatchingMatrix Methods

Set(OrganizationMatchingMatrix)

This method is simply used for copying the specified organization matching matrix,

overwriting that which is currently stored in an object of this class.

Using the matchIT API

NamesAndWords class

This class contains the data lookup tables. These must be loaded – by calling the

Initialize() method – prior to initializing the matchIT engine.

NamesAndWords Methods

Initialize(String, Country)

This method requires both a string specifying the folder containing the data lookup

tables, and an enumeration value specifying the nationality of the tables (see Appendix A

Enumeration A for a list of countries).

Using the matchIT API

InputFields class

This class specifies the data that is input to the Engine.Generate() method (the output of

which is a populated Record object).

Using the matchIT API

InputFields Properties

Properties Type Description Example Requirement

Addressee.Contact string Standardized form of

personal name in one field,

as used in addressing mail.

The matchIT API generates

this field from input Prefix,

FirstNames/Initials and

LastName or Addressee It

is a Read Only property.

Mr Geoff Smith

Mr G. Smith

Not Required

Addressee.FullName string Freeform personal name in

one field, as used in

addressing mail.

The matchIT API can

generate this field from

input Prefix,

FirstNames/Initials and

LastName.

MR G.C. SMITH

Geoff Smith Esq.

Mr G. Smith & Miss S.

Brown

Required for

matching at Contact,

Individual or Family

level, if separate

Prefix,

FirstNames/Initials

and LastName fields

are not present.

Addressee.Salutation string Standardized form of

personal name in one field,

as a salutation for a letter.

The matchIT API generates

this field from input Prefix,

FirstNames/Initials and

LastName or Addressee It

is a Read Only property.

Dear Mr Smith Not Required

Using the matchIT API

Properties Type Description Example Requirement

Addressee.NameElements.LastName string The last name, typically

when the name is split into

component parts of Prefix,

FirstNames/Initials and

LastName.

Smith

van der Valk

Required for

matching at Contact,

Individual or Family

level, if a FullName

field is not present.

Addressee.NameElements.FirstNames string First names (also called

FirstNames) or initials in

one field, typically when

the name is split into

component parts of Prefix,

FirstNames/Initials and

LastName.

The matchIT API will

generate FirstNames from

information contained in a

FullName field if present.

J

JR

J R

John Robert,

John R

Required for

matching at Contact,

Individual or Family

level, if a FullName

field is not present.

Addressee.NameElements.Initials string Initials of either just the

middle name(s), or of all

the first names.

Where the name of the

person is “John R Smith”:

JR or J R if FirstNames is

not present or empty.

R if FirstNames contains

John

Required for

matching at Contact,

Individual or Family

level, if a FullName

field is not present.

Addressee.NameElements.Prefix string Personal title Mr

Mrs

Dr

Professor

Required for

matching at Contact,

Individual or Family

level, if a FullName

field is not present.

Addressee.NameElements.Suffix string A title in a separate field

following the last name.

The matchIT API will

Esq

Jr

Not Required

Using the matchIT API

Properties Type Description Example Requirement

generate Suffix from

information contained in an

Addressee or LastName

field if present.

Addressee.NameElements.Qualification string A Qualification.

The matchIT API will

generate the Qualification

from information contained

in an Addressee or

LastName field if present.

B.Sc.

ARCS

BCom

Not Required

Addressee.SecondNameElements.LastName string The last name of a second

individual.

The matchIT API can

generate this from

information contained in an

Addressee field, if the

Addressee field is

identified as containing

more than one name. E.g.

“Mr John M Smith and Ms

Sarah D Jones”, or “Mr and

Mrs Jones”.

Jones Not Required

Addressee.SecondNameElements.FirstNames string The forename(s) of a

second individual.

The matchIT API can

generate this from

information contained in an

Addressee field, if the

Addressee field is

identified as containing

more than one name. E.g.

“Mr John M Smith and Ms

Sarah D

Sarah

S D

S

Not Required

Using the matchIT API

Properties Type Description Example Requirement

Sarah D Jones”, or “Mr and

Mrs Jones”.

Addressee.SecondNameElements.Initials string The initials of a second

individual.

The matchIT API can

generate this from

information contained in an

Addressee field, if the

Addressee field is

identified as containing

more than one name. E.g.

“Mr John M Smith and Ms

Sarah D Jones”, or “Mr and

Mrs Jones”.

Where the name of the

person is “Mrs Sarah D

Jones”:

S D if FirstNames is not

present or empty.

D if FirstNames contains

Sarah

Not Required

Addressee.SecondNameElements.Prefix string The prefix of a second

individual.

The matchIT API can

generate this from

information contained in an

Addressee field, if the

Addressee field is

identified as containing

more than one name. E.g.

“Mr John M Smith and Ms

Sarah D Jones”, or “Mr and

Mrs Jones”.

Ms

Mrs

Not Required

Address.Lines.Line1

Address.Lines.Line2

Address.Lines.Line3

Address.Lines.Line4

string The only line of address, or

one of multiple address

lines. The address line(s)

may also contain postcodes

or zip codes, as the

matchIT API can extract

560 So Winchester Blvd,

Fl 5 San Jose, CA 95128

560 So Winchester Blvd

Fl 5 San Jose CA 95128

9 North Street

You must have at

least one address

line for address

matching.

Using the matchIT API

Properties Type Description Example Requirement

Address.Lines.Line5

Address.Lines.Line6

Address.Lines.Line7

Address.Lines.Line8

Address.Lines.Line9

these into a designated

Postcode field.

Leatherhead Surrey

 KT22 8DY

Leatherhead KT22 8DY

Address.Elements.Postcode string Should contain either full

or partial UK postcodes or

zip codes.

The matchIT API can

extract valid postcodes or

zip codes from address

lines into the Postcode

field.

GU14 7BQ

KT228DY

KT22

95128

95128-2519

Required in order to

include postcodes

and zip codes in the

matching process.

Address.Elements.Premise string The premise number part

of the address – this is the

building number, not the

apartment or unit number if

there is one

The matchIT API can

move or copy some

premise numbers from an

address line to the Premise

field.

260

12-14

Not required,

however this can be

used within the

match keys in order

to enhance the

accuracy and

efficiency when

performing

matching processes

within large files or

files containing very

localized data.

Address.Elements.FlatNo string The apartment or unit

number, as opposed to

Premise, which is the

building number.

The matchIT API can

A

3

3a

Not Required

Using the matchIT API

Properties Type Description Example Requirement

extract or copy apartment

or flat numbers from the

address lines into the

FlatNo field.

Address.Elements.Thoroughfare string The thoroughfare element

of the address..

The matchIT API can

extract or copy what it

recognizes as the

thoroughfare, from the

address lines into the

Thoroughfare field.

North Street

The Crescent

Not Required

Address.Elements.Town string The town element of the

address.

The matchIT API can

extract or copy any valid

UK post towns, from the

address lines into the Town

field

Kingston Upon Thames

FARNHAM

Not Required

Address.Elements.Region string The US or Australian state

or Canadian province, or

UK county element of the

address.

The matchIT API can

extract or copy states or

provinces or UK counties,

defined as such in the

NAMES.DAT file, from

the address lines into the

Region field.

California

NY

Surrey

Not Required

Address.Elements.Country string The country element of the England Not Required

Using the matchIT API

Properties Type Description Example Requirement

address.

The matchIT API can

extract or copy any valid

country names from the

address lines into the

Country field.

UK

Azerbaijan

Email.Address string An email address. Support@helpIT.com

Sales@helpIT.com

JohnD@helpIT.com

Not Required

Email.Username string Contains the username

extracted from the email

address if its format is

correct.

Support

Sales

JohnD

Not Required

Email.Domain string Contains the domain

extracted from the

emailaddress if its format is

correct.

helpIT.com Not Required

Organization.Name string A company or business

name.

The matchIT API can

move some company

names from the Addressee

or an address line to the

Company field.

helpIT systems ltd

The ABC Company

Not Required

Organization.Department string A department name. Sales Dept.

Marketing

Not Required

Organization.Jobtitle string A job title.

The matchIT API can

Managing Director

MD

Not Required

Using the matchIT API

Properties Type Description Example Requirement

move some job titles or

department names from the

Addressee or an address

line to the JobTitle field.

Telephone.Number string A telephone number.

The matchIT API can split

telephone numbers into two

parts: TelAreaCode for the

area code and

TelLocalNumber for the

local part of the number.

The user can sometimes

more effectively use

TelLocalNumber for

matching.

01372 360070

(01372) 360 070

01372-360070

Not Required

Telephone.Fax string A fax number. The

matchIT API can split fax

numbers into two parts:

FaxAreaCode for the area

code and FaxLocalNumber

for the local part of the

number.

As for Telephone.Number Not Required

Using the matchIT API

matchIT API Guide Page 46

Record class

The record class has two uses:

• Firstly, on returning from the Engine.Generate() method a Record object is

populated with generated data; this is subsequently used for finding matching

records in a database.

• And secondly, when calling the Engine.Compare() method two Record objects

are first initialized with the data to be compared, then these two records are

passed in to the method (and a populated CompareResult object is output, see

CompareResult class).

In the Properties table below, the Match Key column indicates fields that are

recommended for using as match keys (although you can of course use any fields as

match keys). These fields will give you the most effective results.

The Matching Field column indicates fields that must be supplied as part of the matching

process. These are fields that contain additional, useful information to help out with the

matching process.

If you are storing generated fields in a database (to save time by not repeating the

Engine.Generate() method for each record every time it is involved in a comparison), it

is a good idea to store those match keys that you want to use from the list below, and it is

essential to store the matching fields.

Using the matchIT API

Record Properties

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

InputFields (see

InputFields

class)

Yes

KeyFields.NameKey string Yes Phonetic name

key of last

name plus first

initial

For “Bill Dayton”, “William Deighton Jr” and “Bill

Dayten” by default the matchIT API generates

“dytymW”

Finding

records to

compare

KeyFields.OrganizationKey string Yes Phonetic

business name

key of first

significant

word in the

company

name.

For “The A.B.C. Co.”, “ABC Ltd” and “A B C

Company Ltd” by default the matchIT API generates

“ABC”. “The” is ignored in the first example, and

“ABC” is treated as the first word whether or not it has

spaces, periods or nothing separating the letters ABC.

For “Sanford Services Inc”, the matchIT API generates

“symfy” if

Settings.Generate.Organization.UseEquivalentName is

False or “symfysyvys” if it is True

Finding

records to

compare

KeyFields.AddressKey string Yes Phonetic

town/city (first

5 characters)

and phonetic

street name

(remaining 5

characters).

For “North Street, Leatherhead” and “North St,

LEATHERHEAD”, by default the matchIT API

generates “lyTynyT”

Finding

records to

compare

KeyFields.PhoneticStreet string Yes Phoneticization

of the

For “North Street, Leatherhead” and “North St,

LEATHERHEAD”, by default the matchIT API

Finding

records to

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

thoroughfare

found in the

address lines.

Combines with

the

PhoneticTown

to form the

AddressKey

(last five

characters)

generates “nyT” compare

KeyFields.PhoneticTown string Yes Phoneticization

of the

town/city

found in the

address lines.

Combines with

the

PhoneticStreet

to form the

AddressKey

(first five

characters)

For “North Street, Leatherhead” and “North St,

LEATHERHEAD”, by default the matchIT API

generates “lyTy”

Finding

records to

compare

KeyFields.PhoneticLastName string Yes Phonetic last

name

For “Bill Dayton”, “William Deighton Jr” and “Bill

Dayten” the matchIT API generates “dytym”

Finding

records to

compare

KeyFields.PhoneticFirstName string Phonetic

forename

For “Bill Dayton”, “William Deighton Jr” and “Will

Dayten” by default the matchIT API generates “wyl”

Finding

records to

compare

KeyFields.PhoneticMiddleName string Phonetic

middle name if

present

For “John Mark Smith”, the matchIT API generates

“myk”.

Finding

records to

compare

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

For “Mr J M Smith”, the matchIT API generates “m”.

KeyFields.PhoneticOrganizationName1 string Phonetic

version of first

word in

business name

For “The A.B.C. Co.”, “ABC Ltd” and “A B C

Company Ltd” by default the matchIT API generates

“ABC”, as described above.

Finding

records to

compare

KeyFields.PhoneticOrganizationName2 string Phonetic

version of

second word in

business name

if present

For “The A.B.C. Co.”, “ABC Ltd” and “A B C

Company Ltd” the matchIT API does not generate a

value if

Settings.Generate.Organization.UseEquivalentName is

False as the second significant word in each of these

examples is a business word and is therefore ignored. If

you set

Settings.Generate.Organization.UseEquivalentName

to True, it is recommended that you change the type of

words like Co, Ltd and Inc in the NAMES.DAT file

from type “B” for Business to type “N” for Noise.

“The” is ignored by default in the first example as a

Noise word, and “ABC” is treated as the first word.

Finding

records to

compare

KeyFields.PhoneticOrganizationName3 string Phonetic

version of third

word in

business name

if present

Similar to the Name2 property above. If there are more

than three significant elements to the company name,

those after the third significant element are ignored.

Finding

records to

compare

MatchingFields.FirstNameFound string Indicates the

presence of a

recognized

first name

(from the

NAMES.DAT

For “John Smith,” or “Mr Chris Smith” or “Miss Chris

Smith” by default the matchIT API generates “Y”.

It leaves this property blank for “Mr Smith”.

For “Chris Smith” the matchIT API generates “E”

meaning “Either Gender”.

Comparing

records

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

file) in the

Addressee or

FirstNames

fields.

For “Mr Christine Smith” the matchIT API generates

“X” meaning that the prefix and first name are

inconsistent.

MatchingFields.NormalizedName string Yes Normalized

version of full

name if present

For “Bill Dayton”, “William Dayton Jr” and “Will

Dayton” by default the matchIT API generates

“DAYTON,WILL,”, whereas for “William Deighton” it

generates “DEIGHTON,WILL,”.

Comparing

records

MatchingFields.NormalizedOrganization string Yes Normalized

version of full

business name

if present

For “Sanford Services Inc”, the matchIT API generates

“SANFORD,,” if

Settings.Generate.Organization.UseEquivalentName is

False or “SANFORD,SERVICES” if it is True

Comparing

records

MatchingFields.Gender Gender, see

Appendix A

Enumeration

D: Gender

 Yes Gender if

individual

name supplied

For “John Smith,” or “Mr Chris Smith” by default the

matchIT API generates “Male”.

For “Christine Smith” or “Miss Chris Smith” by default

the matchIT API generates “Female”.

For “Dr Chris Smith”, “Chris Smith” or “Mr Christine

Smith” the matchIT API generates “UnknownGender”

by default.

Comparing

records

MatchingFields.PostIn string Yes Inward part of

UK postcode,

if full valid UK

postcode

supplied. Plus

4 part of US

Zip, if

supplied.

For a UK Postcode “KT22 8DY”, the matchIT API

populates this with “8DY”.

For a US zip in the Postcode field of “10536-1423”, the

matchIT API populates this with “1423”.

Finding

records to

compare

MatchingFields.PostOut string Yes Outward part

of UK

For a UK Postcode “KT22 8DY”, the matchIT API

populates this with “KT22”.

Finding

records to

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

postcode if full

or partial valid

UK postcode

supplied. First

5 digits of US

Zip, if

supplied.

For a US zip in the Postcode field of “10536-1423” or

“10536”, the matchIT API populates this with “10536”.

compare

MatchingFields.TelAreaCode string Area code

from telephone

number if

supplied

For “01372 225 904” or “01372225904” the matchIT

API populates this with “01372”.

Finding

records to

compare

MatchingFields.TelLocalNumber string Local part of

telephone

number if

supplied.

Obtained by

removing the

area code

For “01372 225 904” or “01372225904” the matchIT

API populates this with “225904”.

Finding

records to

compare

MatchingFields.FaxAreaCode string Area code

from fax

number if

supplied

As for MatchingFields.TelAreaCode Finding

records to

compare

MatchingFields.FaxLocalNumber string Local part of

fax number if

supplied.

Obtained by

removing the

area code

As for MatchingFields.TelLocalNumber Finding

records to

compare

MatchingFields.DataFlags string Yes Each position

specifies a

If for example, a record was excluded, this would

contain an “X” in position 1. See the next table for a

Comparing

records

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

different

property for

that record

full breakdown

QualityFields,Name integer The name

quality is

calculated

according to

which name

elements have

been specified,

or parsed from

the addressee

0 = empty or nonsense

1 = no surname

2 = surname only

3 = initial + surname

4 = prefix + surname

5 = prefix + initial + surname

6 = unrecognized firstname + surname

7 = firstname + surname

8 = firstname + middlename(s) + surname

9 = prefix + firstname + surname

10 = prefix + firsname + middlename(s) + surname

Quality

analysis

QualityFields.Address integer The address

quality score

calculated

from the

address lines

and fields.

0 = empty or nonsense

1 = no town and/or street

1 = no postcode if

Settings.Generate.Quality.Address.AllowBlankPostcode

is disabled

3 = no town and no postcode

4 = no street but postcode

5 = no town but postcode

*otherwise score1 for region plus 2 for each street,

town, and postcode (maximum of 7).

Quality

analysis

Using the matchIT API

Properties Type Match

Key?

Match-

ing

Field?

Description Example Main

Purpose

QualityFields.Email integer The email

quality score

calculated

from the email

address.

0 = empty, nonsense

1 = invalid format

2 = invalid top-level domain (com, org, uk, fr etc.)

5 = generic username (sales, support, postmaster etc.)

6 = username doesn’t match the firstname & lastname

from the Input fields

7 = webmail domain (eg. Hotmail.com, mail.com) if

Settings.Generate.Quality.Email.WebmailFiltering is

enabled

9 = neither of the above apply

Quality

analysis

Using the matchIT API

matchIT API Guide Page 54

Data Flags Usage

Position DataFlags Usage Values

1 Exclusion Status X if exclusion words are found,

blank otherwise

2 Company

Extracted

C if company name has been extracted

3 Company

Acronym

This is set to 1,2 or 3 if any part of the

company name is an acronym

4 Job Title/

Department

J if job title extracted,

D if department extracted

5 Verified Postcode V if postcode was verified OK

6 Extracted

Postcode

E if postcode was extracted OK

7 Not used by the

matchIT API

8 Generated Prefix

status

P - generated prefix,

Q - changed prefix,

S - used supplied prefix

blank - no personal name processing

9 Salutation status S - default salutation generated

G - non-default (success!) salutation

generated

blank - no salutation field

10 Original Initial Set to the first letter of the input

forename field

11 Original Initial #2 First letter of second input forename,

if any

12 Second Name

Sex

Set to sex of second name if supplied

& possible to calculate

Using the matchIT API

matchIT API Guide Page 55

13 Foreign status F if record is foreign

14 Not used by the

matchIT API

15 Not used by the

matchIT API

16 Premise status X if premise extracted,

C if premise copied

17 Zip status X if zip extracted,

C if zip copied

18 Town status X if town extracted,

C if town copied

19 County status X if county extracted,

C if county copied

20 Country status X if country extracted,

C if country copied.

Record Methods

Clear()

This method simply resets all the data in the record object back to default (empty) values.

Copy(Record)

This method makes a copy of the supplied record.

Using the matchIT API

matchIT API Guide Page 56

CompareResult class

These are the results obtained when two records are compared using Engine.Compare().

The results can be further processed by running them through

Engine.ApplyMatchingRules() to obtain results in the MultiLevelMatchingResults

format (see MultiLevelMatchingResults).

Each result from the MatchingMatrixIndex enumeration can be one of Equal, Approx,

Unequal, etc. For example, if Name.LastName is Approx, then the last names from the

two compared records are approximate, according to the matchIT comparison algorithm.

CompareResult Properties

Properties Type

Name.LastName MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Name.FirstName MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Name.MiddleName MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Name.SuffixMatch Boolean

Name.GenderMatch Boolean

Organization.Name1 MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Organization.Name2 MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Organization.Name3 MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Address.LikelyLinesMatch Boolean

Address.LinesSimilarity double

Address.NonEmptyAddressArguments integer

Address.NonEmptyPremiseArguments integer

Address.Postcode MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Using the matchIT API

matchIT API Guide Page 57

Address.PremiseMatch Boolean

Address.PremiseSimilarity double

Postcode.Postcode MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Postcode.Similarity double

Telephone.Telephone MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Email.Email MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

DateOfBirth.DateOfBirth MatchingMatrixIndex,

see Enumeration E:

MatchingMatrixIndex

Using the matchIT API

matchIT API Guide Page 58

MultiLevelMatchingResults class

These are the results obtained after calling Engine.ApplyMatchingRules(), obtained

when the comparison results from Engine.Compare() are processed in conjunction with

the relevant matching matrix.

Here there are five levels – individual, family, household, business, and custom – each of

which contains four components – name, organization, address, and postal code. The four

components in turn contain two properties, NonEmptyFields and Similarity.

NonEmptyFields can contain either 0, 1, or 2, and specifies the number of fields in the

two records that have non-empty values. For example, if Name.NonEmptyFields is 2,

then no name has been set in either of the two compared records; if 1, then only one

name has been set in one of the two compared records and the other is blank; or if 0, then

both names have been set.

Similarity is a real number in the range 0 to 1, and is the value from the relevant lookup

matching matrix. A value of 1 is defined as a sure match between fields of the two

compared records (e.g. two names are identical or determined to be identical) and 0 is

defined as no match, with intermediate values indicating the likelihood that two fields are

a match or not. Similarity is multiplied by the level’s relevant weight to produce a final

score (see the Scores class) in the range 0 to the actual weight (e.g. by default the final

name score is a real number between 0 and 60 inclusive).

MultiLevelMatchingResults Properties

Properties Type

IndividualLevel.Name.NonEmptyFields integer

IndividualLevel.Name.Similarity double

IndividualLevel.Organization.NonEmptyFields integer

IndividualLevel.Organization.Similarity double

IndividualLevel.Address.NonEmptyFields integer

IndividualLevel.Address.Similarity double

IndividualLevel.Postcode.NonEmptyFields integer

IndividualLevel.Postcode.Similarity double

IndividualLevel.Telephone.NonEmptyFields integer

IndividualLevel.Telephone.Similarity double

IndividualLevel.Email.NonEmptyFields integer

IndividualLevel.Email.Similarity double

IndividualLevel.DateOfBirth.NonEmptyFields integer

IndividualLevel.DateOfBirth.Similarity double

FamilyLevel… (as

Using the matchIT API

matchIT API Guide Page 59

IndividualLevel)

HouseholdLevel… (as

IndividualLevel)

BusinessLevel… (as

IndividualLevel)

CustomLevel… (as

IndividualLevel)

MultiLevelMatchingResults Usage

Individual Level

This will find matches at an individual level e.g. John Smith and Mary Smith living at the

same address will not be matched, nor will John Smith and James Smith. However, John

Smith and Mr J E Smith will be matched and (by default) John Smith and E J Smith will

be regarded as a possible match, as perhaps E J Smith is known by his middle name.

Family Level

This finds matches on surname at the same address e.g. John and Mary Smith at the same

address will be matched, as will John Smith and James Smith, and all but one record will

be flagged.

Household Level

This matches records with the same address, regardless of surname e.g. John Smith and

Lucy Jones living at the same address will be matched.

Business Level

This level is used to produce one record per company or business. Therefore, two

different employees working for the same company will be matched, as long as the

addresses and postcodes match well enough.

Using the matchIT API

matchIT API Guide Page 60

Scores class

The final scores are obtained when Engine.Score() is run with the processed multi-level

matching results (see MultiLevelMatchingResults).

Here there are also five levels – individual, family, household, business, and custom –

each of which contains five score components – name, organization, address, postal code,

and total. Total is the sum of the other four components, and is a value ranging from 0 to

a maximum; this maximum possible matching score is the sum of four weights (e.g. the

name weight is specified by using

Engine.Settings.MatchingRules.IndividualLevel.Weights.Name.SetMatrixWeights).

For example, the default US matching weights for IndividualLevel are 60, 0, 40, and 30

(name, organization, address, and postal code respectively), so the maximum possible

matching score for IndividualLevel.Total is therefore 130. NB: for US zip codes, the

postal code score is restricted by design to a Likely match even if identical, unless the zip

codes include the “Plus 4” element and are identical. For UK data, the weights are the

same as for US data except for address, where the maximum score is set to 30 – this is

because UK postcodes are usually full postcodes which are at a much lower level than a

US zip code, making them worth more in relation to the other components of the data.

So, the maximum possible matching score for IndividualLevel.Total for UK data using

the default weights is therefore 120.

Scores Properties

Properties Type

IndividualLevel.Name double

IndividualLevel.Organization double

IndividualLevel.Address double

IndividualLevel.Postcode double

IndividualLevel.Telephone double

IndividualLevel.Email double

IndividualLevel.DateOfBirth double

IndividualLevel.Total double

FamilyLevel (as IndividualLevel)

HouseholdLevel (as IndividualLevel)

BusinessLevel (as IndividualLevel)

CustomLevel (as IndividualLevel)

Using the matchIT API

matchIT API Guide Page 61

Names and Words Table

The various names and words are contained in the DAT files that are provided with the

matchIT API and must be installed on any system that the matchIT API is installed on.

The Names and Names2 DAT files delivered with the matchIT API are the only ones that

the user will usually want to configure. These tables control:

• the matching equivalent of words e.g. Tony = Anthony

• the gender of forenames e.g. John = Male, Susan = Female, Chris = Either

• casing rules e.g. PO Box, IBM, helpIT

• expansion/contraction of abbreviations and correction of typing errors e.g.

Svcs = Services, Finacial = Financial

• attributing type to these and other words e.g. Mr = Prefix, Ltd = Business,

FL = State, The = Noise.

These are fixed-width text files, by default in the DAT sub-directory; the layout of the

NAMES.DAT file is as follows:

Property Width Description

TYPE 1 Type of entry – see below

NAME 25 Matching equivalent of the entry
(e.g. 'Anthony' has a matching
equivalent of 'Tony', enabling these
two names to be matched)

EQUIVALENT 10 The word which is actually looked
up

GENDER 1 Indicates the gender of the
forename or prefix

SALUTATION 2 Indicates the type of salutation to
be generated for a particular prefix
– see below

PROPER
CASE

30 Proper case value for the entry

SWITCH 1 Indicates whether this entry is the
first part of a two word lookup

Note: matchIT will only look up the word in the Equivalent column, not the Name

column. This means that all names must have an entry with name equal to Equivalent.

The different types that can be entered in the table are as follows:

'A' Address Word, such as "Rd" or "Street"

'B' Business word, such as "Ltd" or "Printers"

'C' UK county, such as "Kent" or "Glos"

Using the matchIT API

matchIT API Guide Page 62

'E' Exclusion word, such as "Deceased" or "Moved"

'F' Female forename (note the gender has to be set for these entries too)

'I' Initials, such as "E" or "W"; these entries are in the table as they may be the

first part of a two word phrase, such as "E Midlands"

'J' Job title word, such as "Manager"

'M' Male forename (note the gender has to be set for these entries too)

'N' Noise word (i.e. ignored when generating keys or address matching), such as

“The” or “House”

'O' Overseas i.e. foreign country

'L' Local country, such as "UK" or "Scotland"; this enables local countries to be

identified as countries, without the record being marked as foreign

'P' Prefix, such as "Mr" or "Captain" (note the gender has to be set for these

entries too, also the SALUTATION TYPE – see below)

'Q' Qualification word, such as "PhD" or "ARICS"; these entries typically always

need a proper case entry as casing of qualifications can be unusual

'S' Special casing word, i.e. a word that is cased unusually but doesn't fall into any

of the above categories, such as "PhotoMe"

T State or province, such as "Pennsylvania" or "PA"

'U' Unknown word; this is for the first word of a two word phrase, which, on their

own, have no special meaning, such as the "Hong" in "Hong Kong"

Each prefix entry must have a salutation type associated with it. The following list

shows the salutation types, along with an example of the type of salutation that will be

generated:

Type Rule Example

S Dear Prefix Surname Dear Mr Smith

C Dear Prefix Surname Dear Mr Smith

FS Dear Prefix Forename
Surname

Dear Mr John Smith

FF Dear Forename Dear John

F Dear Prefix Forename Dear Sir John

B Dear Prefix Dear Sir

T Prefix My Lord

Salutation type C is different from type S in that it is treated as a name even if it is found

in address lines 1 or 2 with Scan Address Lines for Names set. This means that if the

 option is switched on and e.g. MR has salutation type C, then Mr J Smith would be

identified as a name in address line 1 or 2, whereas if MR has salutation type S, then it

would not be identified.

Additionally, each prefix, male forename and female forename must have a gender

associated with it, taking a value of either ‘M’ (Male), ‘F’ (Female), or ‘E’ (Either).

Using the matchIT API

matchIT API Guide Page 63

These tables are in a standard fixed width format that you can edit, but a maintenance

program can be supplied on CD, which allows you to easily edit and maintain the

NAMES.DAT and NAMES2.DAT files.

Note: if you inadvertently change the record length or field positions of these files, it may

cause a failure in the matchIT API.

Surnames Table

SURNAMES.DAT - used for casing surname prefixes such as "de" in Charles de Gaulle.

To add or modify entries, follow the layout of the existing entries.

Towns Table

TOWNS.DAT - used for extracting towns from address lines to a specific Town field,

also for upper casing Towns. This file is available for UK "post towns" only i.e. defined

as such by Royal Mail.

Using the matchIT API

matchIT API Guide Page 64

Coding Example (Visual Basic)

Scalable sample applications are available in the SDKs which accompany the matchIT

API, written in VB.Net and C++. The example shown below is simplified, in that it has

no screen or database interaction. The properties returned by the Engine method would

usually be stored in a database table for efficiency.

Comparing two records

'Load the data lookup tables...

Dim tables As matchIT.NamesAndWords

Set tables = New matchIT.NamesAndWords

tables.Initialize "C:\Tables", UK

'Initialize the matchIT engine...

Dim engine As matchIT.Engine

Set engine = New matchIT.Engine

engine.Initialize tables

'Configure engine settings here

'Create and set the first record...

Dim rec1 As matchIT.Record

Set rec1 = New matchIT.Record

rec1.InputFields.Addressee.FullName = "Bill Dayton"

rec1.InputFields.Address.Lines.Line1 = "12 Greenridge Ave"

rec1.InputFields.Address.Lines.Line2 = "White Plains"

rec1.InputFields.Address.Elements.Region = "NY"

rec1.InputFields.Address.Elements.Postcode = "10605-1423"

engine.Generate rec1.InputFields, rec1

'Create and set the second record...

Dim rec2 As matchIT.Record

Set rec2 = New matchIT.Record

rec2.InputFields.Addressee.FullName = "w r deighton jr"

rec2.InputFields.Address.Lines.Line1 = "12 green ridge

avenue"

Using the matchIT API

matchIT API Guide Page 65

rec2.InputFields.Address.Lines.Line2 = "white planes"

rec2.InputFields.Address.Elements.Postcode = "10605"

engine.Generate rec2.InputFields, rec2

'Compare the two records...

Dim result As matchIT.CompareResult

Set result = New matchIT.CompareResult

engine.Compare rec1, rec2, result

'Apply the matching rules to the results...

Dim mlmresult As matchIT.MultiLevelMatchingResults

Set mlmresult = New matchIT.MultiLevelMatchingResults

engine.ApplyMatchingRules result, mlmresult

'Retrieve the final scores...

Dim scores As matchIT.Scores

Set scores = New matchIT.Scores

engine.Score mlmresult, scores

'Do the records match well enough?

If scores.IndividualLevel.Name >= 80 Then

'Yes, the records do match well enough

'(by default the total IndividualLevel score using US

weights will be 98, with 40 for the name, 38 for the

address, and 20 for the postal code)

End If

Using the matchIT API

Sample Record

Sample of matchIT API Generate processing

This sample record is presented as a guide to the functionality of the matchIT API. It shows in detail the field contents before and after

processing.

Field Name Before (Input) After (Output)

Addressee.FullName TONY R MACKAY JR Tony R MacKay Jr

Addressee.NameElements.Prefix Mr

Addressee.NameElements.FirstNames Tony R

Addressee.NameElements.LastName MacKay

Addressee.NameElements.Suffix Jr

Addressee.Contact Mr Tony R MacKay Jr

Addressee.Salutation Dear Mr MacKay

Gender Male

NormalizedName MACKAY,ANTHONY,R

NameKey mykyA

PhoneticLastName myky

PhoneticFirstName ymTymy

PhoneticMiddleName r

Address.Lines.Line1 12 GREENRIDGE AVE 12 Greenridge Ave

Using the matchIT API

Field Name Before (Input) After (Output)

Address.Lines.Line2 WHITE PLAINS White Plains

Address.Lines.Line3 NY 10605

Address.Lines.Line4 USA

Address.Lines.Line5

Address.Elements.Postcode 10605

Address.Elements.Region NY

Address.Elements.Country USA

Address.Elements.Premise 12

Address.Elements.Thoroughfare Greenridge Ave

AddressKey wytpgrym

Telephone.Number (914) 232-0908 (914) 232-0908

TelAreaCode 914

TelLocalCode 2320908

Using the matchIT API

matchIT API Guide Page 68

Note: To achieve these exact results, the following matchIT API settings must be set

before calling the Engine.Generate() method:

• EngineSettings.Generate.Address.Extract.Premise = CopyExtract

• EngineSettings.Generate.Address.Extract.Thoroughfare = CopyExtract

• EngineSettings.Generate.Address.Extract.Region = MoveExtract

• EngineSettings.Generate.Address.Extract.Country = MoveExtract

• EngineSettings.Generate.Address.Extract.Postcode = MoveExtract

Enumerations

matchIT API Guide Page 69

Appendix A: Enumerations

Enumeration A: Country

0 UnknownCountry

1 UK

2 USA

3 Ireland

4 France

5 Germany

6 Spain

7 Portugal

8 Sweden

9 Denmark

10 Norway

11 Australia

12 NewZealand

13 Austria

14 Switzerland

15 Netherlands

Enumeration B: Extraction

0 Leave

1 CopyExtract

2 MoveExtract

Enumerations

matchIT API Guide Page 70

Enumeration C: FieldType

0 UnknownField

1 NameField

2 TitleField

3 FirstNamesField

4 InitialsField

5 LastNameField

6 OrganizationField

7 AddressField

8 CountryField

9 PostcodeField

10 DPS_Field

11 JobTitleField

12 DepartmentField

13 TelephoneField

14 NoiseField

15 RegionField

16 RegionAndPostcodeField

17 TownAndRegionField

18 TownRegionAndPostcodeField

19 QualificationField

20 EmailField

21 SalutationField

Enumeration D: Gender

0 Male

1 Female

2 Either

3 Inconsistent

4 Unknown

Enumerations

matchIT API Guide Page 71

Enumeration E: MatchingMatrixIndex

0 Equal

1 SoundsEqual

2 BothEmpty

3 OneEmpty

4 Approx

5 SoundsApprox

6 Contains

7 Unequal

Enumeration F: PhoneticAlgorithm

0 None

1 Soundex

2 SoundIT

3 LooseSoundIT

4 DynamicSoundIT

Enumerations

matchIT API Guide Page 72

Contact Details

For help on using the matchIT API, please contact:

USA
helpIT systems inc.

560 So. Winchester Blvd, 5th Floor

San Jose, CA 95128

United States

Toll Free: 866 matchIT (866 628 2448)

International: +1 408 236 7489

Fax: +1 408 236 7491

Email: support.us@helpit.com

UK
helpIT systems ltd.

Swan House

24 Bridge Street

Leatherhead

Surrey

KT22 8BX

United Kingdom

Tel: +44 (0)1372 225904

Fax: +44 (0)1372 360081

Email: support@helpit.com

Website

www.helpIT.com

