

matchIT API

Frequently Asked

Questions

The matchIT API Frequently Asked Questions

What operating systems and languages does the matchIT API support? 1

What run-time libraries does the matchIT API need? 1

I get an ‘Unknown error’ when I start up my application that uses the matchIT API – how can I fix
it? 1

Do I need to activate copy protection on every machine that I install the matchIT API on? 1

Where do I start in order to develop my application? 1

What are match keys and why do I need them? 1

Do I have to store match keys for all the records already in my database? 1

My database stores the data in a relational format. I’ve got a one-to-many relationship between
addresses and people at those addresses. How can I use the matchIT API to find matches in this
kind of data? 2

What match keys should I use? 2

Can I use other fields as match keys apart from the standard ones? 6

What matching weights should I use for my data? 6

How do I set up the API to use a particular matching level? 6

What architecture would you suggest for web-based data entry forms using the matchIT API? 6

Can I use the sample application code in my own programs? 7

How can I change the standard names and words lookups that the matchIT API recognises? 7

Does the matchIT API incorporate zip/postcode/address verification? 7

I don’t want to use ActiveX in my application. Is the matchIT API available as a non-component
standard DLL instead? 7

How well does the matchIT API work on non-English language data? 7

What’s the difference between soundIT and Soundex? 7

How should I set the matchIT API up for foreign data? 7

Does the matchIT suite use the matchIT API? 7

Why doesn’t the matchIT API do any kind of reporting, or direct database access? 8

Apart from the Name, Address, Postcode/Zip, are there any other fields that the matchIT API has
special processing for? 8

Can the matchIT API match email addresses? 8

What happens if I pass data in a property where it doesn’t belong? 8

The matchIT API Frequently Asked Questions Page 1

What operating systems and languages does the matchIT API support?

The API can be used by any programming language or environment that supports ActiveX
controls. This includes VB.NET, C#, Visual C++, Visual Basic, Delphi, VB Scripts, Visual FoxPro
etc. Database languages that support ActiveX controls, such as SQL Server stored procedures,
will also support the API.

The API is supported on Windows 2000/XP/2003 operating systems. The API is also supported
on various Unix and Linux systems, called from Java, Perl or C/C++ - please call your supplier for
details. Platforms not currently supported can be produced on demand.

What run-time libraries does the matchIT API need?

The Windows version of the matchIT API and the SDK applications use only standard Windows
runtime libraries, such as ATL, which are available on all supported Windows platforms and in
any case are statically linked.

For Unix and Linux versions, the API uses only ANSII compatible C++ and no non-standard run-
time libraries are required.

I get an ‘Unknown error’ when I start up my application that uses the matchIT API
– how can I fix it?

This error is usually caused when the API has not been correctly installed, or the DAT file location
is incorrect. Please run the Reactivate utility to ensure that the API has a valid activation code,
and also please ensure that the DAT file location is correct and contains valid DAT files.

Do I need to activate copy protection on every machine that I install the matchIT
API on?

Unless you have an enterprise or site level agreement with us, you will need to activate the API
with a valid activation code on every machine.

An activation code is required on each machine that will use the API. When a code expires, the
API cannot be used until the Reactivate utility is run and the API reactivated with a new activation
code. Note that reinstalling a newer version of the API does not prompt for a new activation code
during installation, any current code is used.

Where do I start in order to develop my application?

Start with the sample application in the SDK that is closest to your requirements. Sample
applications are available for:

• on-line duplicate prevention and on-line inquiry (the findIT SDK and findIT Web)

• batch dedupe and merge/purge (the matchIT SDK and the matchIT SDK for SQL Server)

• web data entry to parse names, standardize data and screen for garbage (the cleanseIT
SDK).

If the sample applications in your installation do not include the programming language(s) that
you are using, please contact your supplier to check on availability of sample applications and
code snippets for these languages.

What are match keys and why do I need them?

Match keys and their usage are described in the matchIT API Documentation, available from the
Windows start menu, matchIT API program group.

Do I have to store match keys for all the records already in my database?

For batch processing, you should store the match keys for every record in the database,
otherwise there is a large overhead in regenerating these keys every time an existing record is

The matchIT API Frequently Asked Questions Page 2

involved in a comparison with another record, and you will be limited in the fields that you can use
to assemble groups of candidate matches.

For on-line processing for duplicate prevention or inquiry, you do not have to store match keys for
every record in the database if your data is sufficiently normalized to allow effective lookups to
assemble candidate matches e.g. if last name is in a separate field, you know the company name
as well as contact name, postal codes are at street level and are reliable. However, storing the
match keys allows a greater likelihood of matches being found using less information. For
example, if you look up Bill Dayton at Zip code 10536 and on the database you have Mr W
Deighton at this Zip code, you will be able to find Mr Dayton immediately if you store the phonetic
Lastname key. However, if you don’t store this key, you will be reliant on (say) a lower level postal
code (as in the UK) or the street part of the address being keyed before you can find Mr
Deighton. This is because it is not normally efficient to compare all records on the database for a
5 digit Zip code with the name being entered for that Zip code.

My database stores the data in a relational format. I’ve got a one-to-many
relationship between addresses and people at those addresses. How can I use the
matchIT API to find matches in this kind of data?

For most effective use of the matchIT API, you should store the key fields that the matchIT API
generates in your database and then use these key fields (possibly in conjunction with standard
fields such as postal code) to assemble candidate matching pairs which the matchIT API can
“score”. You can store the generated key fields either in the relevant table (address keys in the
address table, people keys in the people table etc.), or you can store them in new tables that
have one-to-one relationships to the existing tables. You can then assemble candidate matches
by e.g. using SQL joins on the tables. Alternatively, you could create a “flat” keys table which
would deliberately hold redundant keys data in that (for example) the same address key would be
stored multiple times, as this could prove more efficient for the purposes of grouping candidate
matches.

What match keys should I use?

This depends on what you are using the matchIT API for, the level of matching you want (one per
person, company, address, etc.) and the nature of your data and your requirements. You can use
any fields as match keys, but as a general rule, you should select more than one key (which will
usually include at least one compound key) and there shouldn’t be a common element to all the
keys. For example, you should make sure that the Phonetic Lastname Key is not contained in
every match key that you use, to help detect duplication no matter what data may be missing or
inconsistent. You can use keys containing fields which have not been standardized by the
matchIT API, but these are not usually as reliable for finding matches as those which have been
standardized.

For most purposes, we recommend default match keys as shown in the tables on the following
pages. There are four tables, for:

• duplicate prevention/inquiry

• batch matching e.g. dedupe and merge/purge

with each category being further divided into recommendations depending on existing database
volumes.

The variations by volume stem from the fact that the greater the volume of records in your
database, the larger the groups of records with the same match key and the longer it takes to
compare candidate matches. The point at which you should use the keys recommended for high
database volumes depends on the nature of your data and your requirement. For example,
matching data keyed for data entry against a million geographically widespread records already
on the database may give perfectly good response using the “medium volume” keys, whereas
batch dedupe of half a million records all from one local area may take too long unless you use
the “high volume” keys.

The matchIT API Frequently Asked Questions Page 3

The keys in the tables are each represented in two columns, one for countries such as the US
where postal codes are typically at the town/city level and one for other countries such as the UK
where postal codes are typically at the street or lower level. If your data virtually all has low level
postal codes such as Zip+4 codes for the US, you can use the keys in the right hand columns.

If your file contains lots of exact duplicates, or contains very complex or badly structured data,
you may need to use different keys – please contact your supplier if you would like advice on this.
When using keys which differ from the recommendations, it is a good idea to test what extra
matches may be picked up by the recommended keys, to ensure that the keys you want to use
are effective.

Recommended match keys for duplicate prevention and inquiry - medium volumes of existing data

Data entered US and other data with high level postal codes UK and other data with low level postal codes

Company, contact, postal code

• PhoneticOrganizationName1 + PostOut

• PhoneticLastName + PostOut

• PhoneticOrganizationName1 + PhoneticLastName

• PhoneticOrganizationName1 + PostOut

• PhoneticLastName + PostOut

• Postcode

Company, contact only • PhoneticOrganizationName1 + PhoneticLastName

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticLastName + PhoneticFirstName

• PhoneticOrganizationName1 + PhoneticLastName

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticLastName + PhoneticFirstName

Company, postal code only • PhoneticOrganizationName1 + PostOut

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticOrganizationName1 + PostOut

• Postcode

• PhoneticOrganizationName1 + PhoneticOrganizationName2

Contact, postal code only • PhoneticLastName + PostOut

• PhoneticLastName + PhoneticFirstName

• PhoneticLastName + PostOut

• Postcode

• PhoneticLastName + PhoneticFirstName

Company only • PhoneticOrganizationName1 + PhoneticOrganizationName2 • PhoneticOrganizationName1 + PhoneticOrganizationName2

Contact only • PhoneticLastName + PhoneticFirstName • PhoneticLastName + PhoneticFirstName

Postal code only • Postcode • Postcode

When address is entered, in addition
to any of the above

• AddressKey + Premise • AddressKey

 Recommended match keys for duplicate prevention and inquiry - high volumes of existing data

Data entered US and other data with high level postal codes UK and other data with low level postal codes

Company, contact, postal code

• PhoneticOrganizationName1 + PhoneticOrganizationName2 + PostOut

• PhoneticLastName + PhoneticFirstName + PostOut

• PhoneticOrganizationName1 + PhoneticLastName + PhoneticFirstName

• PhoneticOrganizationName1 + PostOut

• PhoneticLastName + PostOut

• Postcode

Company, contact only • PhoneticOrganizationName1 + PhoneticLastName

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticLastName + PhoneticFirstName

• PhoneticOrganizationName1 + PhoneticLastName

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticLastName + PhoneticFirstName

Company, postal code only • PhoneticOrganizationName1 + PostOut

• PhoneticOrganizationName1 + PhoneticOrganizationName2

• PhoneticOrganizationName1 + PostOut

• Postcode

• PhoneticOrganizationName1 + PhoneticOrganizationName2

Contact, postal code only • PhoneticLastName + PhoneticFirstName + PostOut

• PhoneticLastName + PostOut (where LastName is uncommon)

• PhoneticLastName + PhoneticFirstName (where name is uncommon)

• PhoneticLastName + PhoneticFirstName + PostOut

• PhoneticLastName + Postcode

• PhoneticLastName + PhoneticFirstName (where name is uncommon)

Company only • PhoneticOrganizationName1 + PhoneticOrganizationName2 • PhoneticOrganizationName1 + PhoneticOrganizationName2

Contact only • PhoneticLastName + PhoneticFirstName • PhoneticLastName + PhoneticFirstName

Postal code only
• Postcode • Postcode

When address is entered, in addition
to any of the above

• AddressKey + Premise • AddressKey

Match keys to use for batch matching of names and addresses - medium data volumes

 Matching level US and other data with high level postal codes UK and other data with low level postal codes

Person level

• PostOut + PhoneticLastName

• PhoneticLastName + street part of AddressKey (char 5-8)

• AddressKey + Premise

• PostOut + PhoneticLastName

• PhoneticLastName + street part of AddressKey (char 5-8)

• Postcode

Family level Same as Person level Same as Person level

Address level • PostOut + PhoneticLastName

• PostOut + street part of AddressKey + Premise

• AddressKey + Premise

• PostOut + PhoneticLastName

• Postcode + street part of AddressKey + Premise

• Postcode

Organization level • PostOut + PhoneticOrganizationName1

• PhoneticOrganizationName1 + street part of AddressKey

• AddressKey + Premise

• PostOut + PhoneticOrganizationName1

• PhoneticOrganizationName1 + street part of AddressKey

• Postcode

If items of data other than name and
address are available e.g.
Telephone, Email, Account

Use these keys as individual match keys, possibly in addition to those
above

Use these keys as individual match keys, possibly in addition to those
above

Match keys to use for batch matching of names and addresses - high data volumes

 Matching level US and other data with high level postal codes UK and other data with low level postal codes

Person level • AddressKey + PhoneticLastName

• PostOut + street part of AddressKey + Premise (where Premise is non-
blank)

• Postcode + PhoneticLastName (where Postcode is at street or lower
level)

• Postcode + PhoneticLastName

• AddressKey + PhoneticLastName

• Postcode + Premise (or Delivery Point Suffix if available)

Family level Same as Person level Same as Person level

Address level • AddressKey + PhoneticLastName

• PostOut + street part of AddressKey + Premise (where Premise is non-
blank)

• Postcode + Premise (or Delivery Point code if available) (where Postcode
is at street or lower level and Premise is non-blank)

• AddressKey + PhoneticLastName

• Postcode + Premise (or Delivery Point Suffix if available)

Organization level • AddressKey + PhoneticOrganizationName1

• Postcode + PhoneticOrganizationName1 + PhoneticOrganizationName2

• Postcode + street part of AddressKey + Premise (where Premise is non-
blank)

• Postcode + PhoneticOrganizationName1

• AddressKey + PhoneticOrganizationName1

• Postcode + Premise (or Delivery Point Suffix if available)

If items of data other than name and
address are available e.g.
Telephone, Email, Account

Use these keys as individual match keys, possibly in addition to those
above

Use these keys as individual match keys, possibly in addition to those
above

The matchIT API Frequently Asked Questions Page 6

Can I use other fields as match keys apart from the standard ones?

Yes you can, although you must remember that there is no normalization of these fields
performed by e.g. SQL Select or Index statements, so you must make sure that casing,
punctuation and white space differences do not affect the match key, or are handled by using the
API’s generated match keys.

What matching weights should I use for my data?

Again, this is dependant on the data, but the default weights that the matchIT API allocates are
adequate for most purposes:

• Residential (one record per person or family)

Description Name Address Postcode

Sure 60 40 (US) 30 (UK) 30

Likely 40 30 (US) 22 (UK) 20

Possible 20 20 (US) 15 (UK) 15

One Empty 15 5 10

Both Empty 25 5 10

The different Address weights for US (or high level postal codes) and UK (or low level
postal codes) stem from the fact that the Sure weight on Postcode is reserved for
postcodes that are (as far as can be determined) at street or lower level. For example, for
US Zip codes, the Sure weight will only be allocated to full Zip+4 codes that are equal,
whereas 5 digit Zip codes that are equal will only achieve the Likely weight, as will a 5
digit Zip which matches the first 5 digits of a Zip+4 code.

• Residential (one record per address – household matching)

As for one record per person or family, but with zero weights on Name.

• Business (one record per person or contact)

This is the same as for Personal Matching, as by default the matchIT API ignores
company names when matching business contacts – this is because it is very common for
companies to change their name, individuals to work for more than one company in the
same group etc. Of course, you can choose to put a weight on the company name as well,
if you wish.

• Business (one record per company)

As for one record per person or family, but with the same weights on Organization Name
instead of Name.

How do I set up the API to use a particular matching level?

The matchIT API has four matching levels (individual, family, household, and business). When
two records are compared, the scores are automatically calculated for all matching levels; no
prior set up is required beforehand.

After comparing two records, for example, the Name score for the individual matching level can
be retrieved using ‘Scores.IndividualLevel.Name’ and the Organization score for the business
matching level can be retrieved using ‘Scores.BusinessLevel.Organization’.

What architecture would you suggest for web-based data entry forms using the
matchIT API?

We recommend that you implement a multi-tier architecture where the business tier (usually a
server in its own right) has the API implemented on it. In this way, web queries can be sent to this
machine. This tier will then carry out the various casing and parsing functions on the data
entered, and return the results to the web client.

This has the following advantages:-

The matchIT API Frequently Asked Questions Page 7

• the API is installed in only one place, so maintenance of the application is easy;

• the API does not need to be downloaded as an embedded control in the web form, which
could cause a significant time overhead.

Can I use the sample application code in my own programs?

We encourage you to use any relevant code from the sample applications in your own systems.
These programs are intended to provide real world, scalable applications, which are free for you
to amend as necessary and use in any way you wish.

How can I change the standard names and words lookups that the matchIT API
recognises?

Please consult the Names and Words Table section in the matchIT API Documentation, available
from the Windows start menu, matchIT API program group.

Does the matchIT API incorporate zip/postcode/address verification?

The matchIT API does not, but the findIT SDK sample data entry application does, using the rapid
addressing API from QAS. Both API’s are available from your supplier.

Batch applications incorporating address verification are also available from your supplier.

I don’t want to use ActiveX in my application. Is the matchIT API available as a
non-component standard DLL instead?

A non-ActiveX version of the matchIT API library can be produced for large scale deployments.

How well does the matchIT API work on non-English language data?

The matchIT API will work very well on non-English data, providing the character set is essentially
the Roman alphabet. There are users of the matchIT API in many non-English speaking countries
and using non-English data from many countries, including several European languages.

Although the soundIT phonetic algorithm is tuned for English data, a good result is achieved for
the kinds of errors that arise in practise on foreign data. Combining this with the intelligent name
& address processing (which copes with keying and reading errors as well as phonetic matches),
the matchIT API becomes a very useful tool for processing non-English data sets. We
recommend that you use the “Loose soundIT” setting for non-English language data.

What’s the difference between soundIT and Soundex?

soundIT is a proprietary phonetic algorithm developed exclusively by helpIT systems. For
phonetic matching, you need an accurate algorithm – one that matches words together when they
sound the same, and does not match when they sound different. soundIT works by splitting a
name or word into syllables, working out the sound of each syllable, with greater emphasis on the
stressed syllable. This contrasts with Soundex, which disregards all vowels, plus the letters Y, W
and H, unless they form the first letter of the word. This means that Soundex gets the same key
for quite different names such as Brady, Broad and Beard, whilst missing names which soundIT
matches, like Deighton and Dayton.

How should I set the matchIT API up for foreign data?

The API has a ‘Nationality’ options setting within it, Engine.Settings.NationalityOfData. If you
expect the majority of your data to be from one country, just select that country, otherwise select
“Other”. This alters the address processing for different address and postcode formats.

We recommend that you use the “Loose soundIT” setting for non-English language data.

Does the matchIT suite use the matchIT API?

The standalone matchIT batch data cleansing suite and the matchIT API use the same core
code, which is the matchIT API core code. Forthcoming versions of matchIT will use the API

The matchIT API Frequently Asked Questions Page 8

itself i.e. at the same level as the sample applications available in the API SDKs. This means that
you can use the same options in the matchIT API as in matchIT and get the same results, which
can be useful in testing different options – it is quicker to test different options in matchIT because
it provides specific screens to set all the options, reports and views on selected results etc. When
the options are stable, they can then be implemented using the matchIT API without having to
provide the same degree of flexibility as the matchIT suite provides.

Why doesn’t the matchIT API do any kind of reporting, or direct database access?

The matchIT API doesn’t do any reporting or database access, as this would limit the operating
systems and databases for which it can be used. If reporting or ADO database access was
included in the control, this would limit the code that could be used cross-platform. However, the
Windows SDK sample applications do provide database access code using ADO for common
database managers.

Apart from the Name, Address, Postcode/Zip, are there any other fields that the
matchIT API has special processing for?

Yes, other fields include job title, department, telephone and fax. The matchIT API does not do as
much with these fields as with the Name and Address data – more information is given in the
matchIT API Documentation.

In a forthcoming release of the matchIT API, you will be able to use these fields for matching by
setting weights on these fields – this will be limited to non-phonetic comparisons, looking for
single character differences, transpositions etc.

The matchIT API also processes fields that could be included as part of other fields – for
example, Suffix, Qualification, Premise, Town, County, State, Country. These fields are mainly
used for data extraction.

Can the matchIT API match email addresses?

A forthcoming version of the matchIT API will include intelligent matching and validation of email
addresses – please contact your supplier for further details.

What happens if I pass data in a property where it doesn’t belong?

It will be ignored or processed incorrectly. If for example, you pass a company name in a
personal name (e.g. fullname) property, then the matchIT API expects to see a person’s name
there and will generate either a blank personal name key, or an incorrect personal name key
without allowing for the different nature of company names. Matches can still be found, but the hit
rate and effectiveness will be reduced.

It is possible to use the Generate method to attempt to clean up data which sometimes has items
that are wrongly located e.g. you can extract data items like full name, company, town, etc from
address lines into their proper fields, if they can be recognized for what they are by a word in the
Names table such as Mr or Ltd.

